{"title":"Novel quinolone substituted 1,3,4-oxadiazole derivatives: design, synthesis, antimicrobial and anti-inflammatory potential.","authors":"Vishal Sharma, Rina Das, Dinesh Kumar Mehta, Diksha Sharma","doi":"10.1007/s11030-024-10949-y","DOIUrl":null,"url":null,"abstract":"<p><p>A novel series of quinolone-substituted 1,3,4-oxadiazole derivatives 4(a-l) have been designed and synthesized. The target compounds were investigated for their antibacterial activity against gram positive (Staphylococcus aureus, ATCC 25923, Enterococcus faecalis, ATCC 29212) and gram negative bacterium (Escherichia coli, ATCC 25922, Pseudomonas aeruginosa, ATCC 27853) for antifungal activity using (Candida albicans, ATCC 10231) and anti-inflammatory activity as COX-II inhibitors, respectively. The 1,3,4-oxadiazole functionality was introduced at C-6 position of pipemidic acid derivatives. IR, <sup>1</sup>H NMR and Mass spectrometry techniques confirmed the structure of synthesized derivatives. The quinolone (pipemidic acid)-oxadiazole hybrid derivatives were effective against bacterial strains. When compared to ciprofloxacin (MIC 16 µg/mL), the compounds under consideration (4f, 4h, and 4k) showed significant antibacterial activity against all bacterial strains except Enterococcus faecalis, with MICs of 8 µg/mL. On the other hand, synthesized target compounds 4(a-l) did not respond well against Candida albicans fungal strain. The compound (4k) represents high % inhibition against COX-II. The compounds (4f, 4h and 4k) exhibited highest hydrogen bonding interaction with ARG57, ARG72, ARG78, LEU54 and MET16 target residues with a binding energy of - 8.4, - 8.6 and - 8.5 kcal/mol into the active pocket of DNA gyrase enzyme respectively even better in comparison to reference ligands. Based on the docking study, quinolone (pipemidic acid) oxadiazole hybrid structural ligands exhibited strong interaction at binding pockets of DNA gyrase enzyme.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10949-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A novel series of quinolone-substituted 1,3,4-oxadiazole derivatives 4(a-l) have been designed and synthesized. The target compounds were investigated for their antibacterial activity against gram positive (Staphylococcus aureus, ATCC 25923, Enterococcus faecalis, ATCC 29212) and gram negative bacterium (Escherichia coli, ATCC 25922, Pseudomonas aeruginosa, ATCC 27853) for antifungal activity using (Candida albicans, ATCC 10231) and anti-inflammatory activity as COX-II inhibitors, respectively. The 1,3,4-oxadiazole functionality was introduced at C-6 position of pipemidic acid derivatives. IR, 1H NMR and Mass spectrometry techniques confirmed the structure of synthesized derivatives. The quinolone (pipemidic acid)-oxadiazole hybrid derivatives were effective against bacterial strains. When compared to ciprofloxacin (MIC 16 µg/mL), the compounds under consideration (4f, 4h, and 4k) showed significant antibacterial activity against all bacterial strains except Enterococcus faecalis, with MICs of 8 µg/mL. On the other hand, synthesized target compounds 4(a-l) did not respond well against Candida albicans fungal strain. The compound (4k) represents high % inhibition against COX-II. The compounds (4f, 4h and 4k) exhibited highest hydrogen bonding interaction with ARG57, ARG72, ARG78, LEU54 and MET16 target residues with a binding energy of - 8.4, - 8.6 and - 8.5 kcal/mol into the active pocket of DNA gyrase enzyme respectively even better in comparison to reference ligands. Based on the docking study, quinolone (pipemidic acid) oxadiazole hybrid structural ligands exhibited strong interaction at binding pockets of DNA gyrase enzyme.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;