{"title":"Effect of torsion and electric charge parameters on the configuration of anisotropic compact stars in f(T) gravity","authors":"S.K. Maurya , Abdelghani Errehymy , Mohammed Daoud , Kairat Myrzakulov , Zhanbala Umbetova","doi":"10.1016/j.dark.2024.101586","DOIUrl":null,"url":null,"abstract":"<div><p>Under the assumption of a linear <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> function, we present a new exact solution for an anisotropic and charged stars in the background of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity. By considering ansatz for the metric potential, charge function, and anisotropy function, we have arrived at an exact and nonsingular solution to the field problem. The anisotropy and charge function are discovered to be contingent upon the existence of the torsion scalar, and the evolution of the charge and anisotropy of the stellar matter is significantly influenced by variations in the torsion parameter <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The features of anisotropy and charged compact star at the boundary are examined by making the interior metric solution correspond to the exterior Reissner-Nordström-de Sitter solution. The physical validity of the derived quantities is shown graphically, and the energy conditions are found to be satisfied. The causality condition, hydrostatic stable equilibrium, and adiabatic stability are also verified for the chosen values of the torsion parameter. The <span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span> relations are analyzed for the charged and anisotropic stellar configurations in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity. It is found that increasing values of the torsion parameter <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> enhance the maximum mass of the star while increasing values of the charge parameter <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> decrease the maximum mass. The influence of anisotropy via increasing the torsion parameter could be a probable interpretation of the maximum masses exceeding 2.5 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, as observed in the case of the secondary companion of GW190814. Interestingly, our study sheds light on the characteristic of non-singular solutions to the field equations in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity with linear <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101586"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001687","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Under the assumption of a linear function, we present a new exact solution for an anisotropic and charged stars in the background of -gravity. By considering ansatz for the metric potential, charge function, and anisotropy function, we have arrived at an exact and nonsingular solution to the field problem. The anisotropy and charge function are discovered to be contingent upon the existence of the torsion scalar, and the evolution of the charge and anisotropy of the stellar matter is significantly influenced by variations in the torsion parameter . The features of anisotropy and charged compact star at the boundary are examined by making the interior metric solution correspond to the exterior Reissner-Nordström-de Sitter solution. The physical validity of the derived quantities is shown graphically, and the energy conditions are found to be satisfied. The causality condition, hydrostatic stable equilibrium, and adiabatic stability are also verified for the chosen values of the torsion parameter. The relations are analyzed for the charged and anisotropic stellar configurations in -gravity. It is found that increasing values of the torsion parameter enhance the maximum mass of the star while increasing values of the charge parameter decrease the maximum mass. The influence of anisotropy via increasing the torsion parameter could be a probable interpretation of the maximum masses exceeding 2.5 , as observed in the case of the secondary companion of GW190814. Interestingly, our study sheds light on the characteristic of non-singular solutions to the field equations in -gravity with linear .
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.