The influence of prevention and isolation measures to control the infections of the fractional Chickenpox disease model

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"The influence of prevention and isolation measures to control the infections of the fractional Chickenpox disease model","authors":"","doi":"10.1016/j.matcom.2024.07.028","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a mathematical model using the Caputo fractional derivative (CFD) and two control signals to study the transmission dynamics and control of Chickenpox (Varicella) outbreak. The model consists of six compartments representing susceptible, vaccinated, exposed, infected with complications, infected without complications, and recovered individuals. We analyze the theoretical properties of the model, including existence, uniqueness, and boundedness of solutions, and calculate the basic reproduction number <span><math><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span>. We identify equilibrium points and establish conditions for their stability. Sensitivity analysis helps identify the most influential parameters on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We formulate a fractional optimal control problem (FOCP) by incorporating time-dependent prevention and isolation measures. The necessary optimality conditions are derived using Pontryagin’s maximum principle. Numerical simulations based on the Adams–Bashforth–Moulton (ABM) method illustrate the impact of control measures and fractional order on disease propagation. The results highlight the effectiveness of optimal controls and fractional order in understanding and managing epidemics, enhancing stability conditions. The study contributes to a better understanding of Chickenpox transmission dynamics and provides insights for disease control and management, aiding decision-makers and governments in taking preventive measures.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424002854","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a mathematical model using the Caputo fractional derivative (CFD) and two control signals to study the transmission dynamics and control of Chickenpox (Varicella) outbreak. The model consists of six compartments representing susceptible, vaccinated, exposed, infected with complications, infected without complications, and recovered individuals. We analyze the theoretical properties of the model, including existence, uniqueness, and boundedness of solutions, and calculate the basic reproduction number (R0). We identify equilibrium points and establish conditions for their stability. Sensitivity analysis helps identify the most influential parameters on R0. We formulate a fractional optimal control problem (FOCP) by incorporating time-dependent prevention and isolation measures. The necessary optimality conditions are derived using Pontryagin’s maximum principle. Numerical simulations based on the Adams–Bashforth–Moulton (ABM) method illustrate the impact of control measures and fractional order on disease propagation. The results highlight the effectiveness of optimal controls and fractional order in understanding and managing epidemics, enhancing stability conditions. The study contributes to a better understanding of Chickenpox transmission dynamics and provides insights for disease control and management, aiding decision-makers and governments in taking preventive measures.

预防和隔离措施对控制分型水痘疾病模型感染的影响
本文提出了一个使用卡普托分数导数(CFD)和两个控制信号的数学模型,用于研究水痘(水痘)爆发的传播动态和控制。该模型由六个部分组成,分别代表易感者、接种者、暴露者、有并发症的感染者、无并发症的感染者和康复者。我们分析了模型的理论特性,包括解的存在性、唯一性和有界性,并计算了基本繁殖数(R0)。我们确定了平衡点,并为其稳定性设定了条件。敏感性分析有助于确定对 R0 影响最大的参数。我们结合随时间变化的预防和隔离措施,提出了一个分数最优控制问题(FOCP)。利用庞特里亚金最大原则推导出了必要的最优性条件。基于 Adams-Bashforth-Moulton (ABM) 方法的数值模拟说明了控制措施和分数阶数对疾病传播的影响。结果凸显了最优控制和分数阶在理解和管理流行病、增强稳定性条件方面的有效性。这项研究有助于更好地理解水痘传播动态,为疾病控制和管理提供见解,帮助决策者和政府采取预防措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信