Paschalis Paranos, Spyros Pournaras, Joseph Meletiadis
{"title":"A single-layer spot assay for easy, fast, and high-throughput quantitation of phages against multidrug-resistant Gram-negative pathogens.","authors":"Paschalis Paranos, Spyros Pournaras, Joseph Meletiadis","doi":"10.1128/jcm.00743-24","DOIUrl":null,"url":null,"abstract":"<p><p>Double-layer agar (DLA) overlay plaque assay is the gold standard for phage enumeration. However, it is cumbersome and time-consuming. Given the great interest in phage therapy, we explored alternative assays for phage quantitation. A total of 16 different phages belonging to Myoviridae, Siphoviridae, and Podoviridae families were quantitated with five <i>K</i>. <i>pneumoniae,</i> eight <i>P</i>. <i>aeruginosa,</i> and three <i>A</i>. <i>baumannii</i> host isolates. Phages were quantitated with the standard DLA assay (10 mL of LB soft agar 0.7% on LB hard agar 1.5%) and the new single-layer agar (SLA) assay (10 mL of LB soft agar 0.7%) with phages spread (spread) into or spotted (spot) onto soft agar. Phage concentrations with each assay were correlated with the standard assay, and the relative and absolute differences between each assay and the standard double-layer agar spread were calculated. Phage concentrations 1 × 10<sup>4</sup>-8.3 x10<sup>12</sup> PFU/mL with the standard DLA assay were quantitated with SLA-spread, SLA-spot, and DLA-spot assays, and the median (range) relative and absolute differences were <10% and <0.98 log<sub>10</sub>PFU/mL, respectively, for all phage/bacterial species (ANOVA <i>P</i> = 0.1-0.43), and they were highly correlated (r > 0.77, <i>P</i> < 0.01). Moreover, plaques could be quantified at 37°C after 4-h incubation for <i>K. pneumoniae</i> phages and 6-h incubation for <i>P. aeruginosa</i> and <i>A. baumannii</i> phages, and estimated concentrations remained the same over 24 hours. Compared to DLA assay, the SLA-spot assay required less media, it was 10 times faster, and generated same-day results. The SLA-spot assay was cheaper, faster, easier to perform, and generated similar phage concentrations as the standard DLA-spread assay.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0074324"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.00743-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Double-layer agar (DLA) overlay plaque assay is the gold standard for phage enumeration. However, it is cumbersome and time-consuming. Given the great interest in phage therapy, we explored alternative assays for phage quantitation. A total of 16 different phages belonging to Myoviridae, Siphoviridae, and Podoviridae families were quantitated with five K. pneumoniae, eight P. aeruginosa, and three A. baumannii host isolates. Phages were quantitated with the standard DLA assay (10 mL of LB soft agar 0.7% on LB hard agar 1.5%) and the new single-layer agar (SLA) assay (10 mL of LB soft agar 0.7%) with phages spread (spread) into or spotted (spot) onto soft agar. Phage concentrations with each assay were correlated with the standard assay, and the relative and absolute differences between each assay and the standard double-layer agar spread were calculated. Phage concentrations 1 × 104-8.3 x1012 PFU/mL with the standard DLA assay were quantitated with SLA-spread, SLA-spot, and DLA-spot assays, and the median (range) relative and absolute differences were <10% and <0.98 log10PFU/mL, respectively, for all phage/bacterial species (ANOVA P = 0.1-0.43), and they were highly correlated (r > 0.77, P < 0.01). Moreover, plaques could be quantified at 37°C after 4-h incubation for K. pneumoniae phages and 6-h incubation for P. aeruginosa and A. baumannii phages, and estimated concentrations remained the same over 24 hours. Compared to DLA assay, the SLA-spot assay required less media, it was 10 times faster, and generated same-day results. The SLA-spot assay was cheaper, faster, easier to perform, and generated similar phage concentrations as the standard DLA-spread assay.
期刊介绍:
The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.