Research on Stator Loss Suppression of a Dual-Rotor Flux-Modulated PM Motor Based on Harmonic Directional Reduction

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zixuan Xiang;Hucheng Qian;Xiaoyong Zhu;Yuting Zhou;Li Quan;Feng Li
{"title":"Research on Stator Loss Suppression of a Dual-Rotor Flux-Modulated PM Motor Based on Harmonic Directional Reduction","authors":"Zixuan Xiang;Hucheng Qian;Xiaoyong Zhu;Yuting Zhou;Li Quan;Feng Li","doi":"10.1109/TMAG.2024.3433542","DOIUrl":null,"url":null,"abstract":"In this article, a research method to reduce the stator core loss of dual-rotor flux-modulated permanent magnet (DR-FMPM) motor based on harmonic directional reduction is presented. Based on the field modulation theory, the relationships between airgap harmonics and stator core loss of the DR-FMPM motor is obtained. Then, the armature field and permanent magnet field sources of the air gap harmonics are considered in the analysis. In this manner, the airgap harmonics that only cause loss without contributing to torque are identified, and the magnetic field source of these harmonics can be recognized. Based on this, the design method of harmonic directional reduction for these airgap harmonics are proposed. Finally, the effectiveness of the stator core loss analysis and suppression is verified by finite element analysis (FEA).","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"60 9","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609450/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a research method to reduce the stator core loss of dual-rotor flux-modulated permanent magnet (DR-FMPM) motor based on harmonic directional reduction is presented. Based on the field modulation theory, the relationships between airgap harmonics and stator core loss of the DR-FMPM motor is obtained. Then, the armature field and permanent magnet field sources of the air gap harmonics are considered in the analysis. In this manner, the airgap harmonics that only cause loss without contributing to torque are identified, and the magnetic field source of these harmonics can be recognized. Based on this, the design method of harmonic directional reduction for these airgap harmonics are proposed. Finally, the effectiveness of the stator core loss analysis and suppression is verified by finite element analysis (FEA).
基于谐波定向抑制的双转子磁通调制永磁电机定子损耗研究
本文提出了一种基于谐波定向减少的双转子磁通调制永磁(DR-FMPM)电机定子铁芯损耗的研究方法。基于磁场调制理论,得出了 DR-FMPM 电机气隙谐波与定子铁芯损耗之间的关系。然后,在分析中考虑了气隙谐波的电枢磁场源和永磁磁场源。通过这种方法,可以识别出只造成损耗而不产生转矩的气隙谐波,并识别出这些谐波的磁场源。在此基础上,提出了针对这些气隙谐波的谐波定向减小设计方法。最后,通过有限元分析(FEA)验证了定子铁芯损耗分析和抑制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信