Typical Conservative Homeomorphisms Have Total Metric Mean Dimension

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gabriel Lacerda;Sergio Romaña
{"title":"Typical Conservative Homeomorphisms Have Total Metric Mean Dimension","authors":"Gabriel Lacerda;Sergio Romaña","doi":"10.1109/TIT.2024.3432658","DOIUrl":null,"url":null,"abstract":"Given a compact smooth boundaryless manifold with dimension greater than one endowed with a locally positive non-atomic measure \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n, we prove that typical \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-preserving homeomorphisms have upper metric mean dimension, with respect to the Riemannian distance, equal to the dimension of the manifold. Moreover, we prove that \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n is a measure of maximal metric mean dimension, with respect to the variational principle established by Velozo and Velozo.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7664-7672"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606531/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a compact smooth boundaryless manifold with dimension greater than one endowed with a locally positive non-atomic measure $\mu $ , we prove that typical $\mu $ -preserving homeomorphisms have upper metric mean dimension, with respect to the Riemannian distance, equal to the dimension of the manifold. Moreover, we prove that $\mu $ is a measure of maximal metric mean dimension, with respect to the variational principle established by Velozo and Velozo.
典型的保守同构具有总度量平均维度
给定一个维度大于1的紧凑光滑无边界流形,赋予它局部正非原子度量$\mu $ ,我们证明典型的$\mu $ 保留同构具有上度量均维,关于黎曼距离,等于流形的维度。此外,我们证明 $\mu $ 是最大度量均维的度量,这与 Velozo 和 Velozo 建立的变分原理有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信