Wenhui Yan , Ping Lu , Yuyan Liu, Zigang Hou, Liran Fu, Jia Shi, Guo Zhenfei, Haifeng Zhu
{"title":"Comprehensive evaluation of phosphate deficiency tolerance in common vetch germplasms and the adaption mechanism to phosphate deficiency","authors":"Wenhui Yan , Ping Lu , Yuyan Liu, Zigang Hou, Liran Fu, Jia Shi, Guo Zhenfei, Haifeng Zhu","doi":"10.1016/j.jplph.2024.154317","DOIUrl":null,"url":null,"abstract":"<div><p>Common vetch (<em>Vicia sativa</em> L.) is widely planted as forage, green manure and food. Phosphate (Pi) deficiency is an important constraint for legume crop production. In this study, P-deficiency tolerance in 40 common vetch collections was evaluated under hydroponic condition. The collections were clustered into three groups based on the tolerance level. Physiological responses to P-deficiency in two tolerant collections (418 and 426) in comparison with one sensitive collection (415) were investigated. Greater growth inhibition was observed in sensitive collection compared with two tolerant collections, although the inorganic phosphorus (P) content in sensitive collection was higher than those in tolerant collections. The internal and external purple acid phosphatase activity in plants showed no significant difference between 418 and 415 under low phosphate condition. Transcriptomic analysis in the tolerant collection 426 in response to Pi starvation showed that many common adaptive strategies were applied and PHOSPHATE STARVATION RESPONSE (PHR)-related Pi signaling and transporter genes were altered. <em>VsPHT1.2</em> had the highest expression level in root among all <em>VsPHT1s</em>, and it was remarkably upregulated after short time of P-deficiency treatment in tolerant collections compared with sensitive collection. In conclusion, common vetch response to P starvation by altering the expressions of core genes involved in Pi transport and signaling, and the elevated expression of <em>VsPHT1.2</em> gene might contribute to higher Pi acquisition efficiency in P-deficiency tolerant collections.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"302 ","pages":"Article 154317"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001482","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Common vetch (Vicia sativa L.) is widely planted as forage, green manure and food. Phosphate (Pi) deficiency is an important constraint for legume crop production. In this study, P-deficiency tolerance in 40 common vetch collections was evaluated under hydroponic condition. The collections were clustered into three groups based on the tolerance level. Physiological responses to P-deficiency in two tolerant collections (418 and 426) in comparison with one sensitive collection (415) were investigated. Greater growth inhibition was observed in sensitive collection compared with two tolerant collections, although the inorganic phosphorus (P) content in sensitive collection was higher than those in tolerant collections. The internal and external purple acid phosphatase activity in plants showed no significant difference between 418 and 415 under low phosphate condition. Transcriptomic analysis in the tolerant collection 426 in response to Pi starvation showed that many common adaptive strategies were applied and PHOSPHATE STARVATION RESPONSE (PHR)-related Pi signaling and transporter genes were altered. VsPHT1.2 had the highest expression level in root among all VsPHT1s, and it was remarkably upregulated after short time of P-deficiency treatment in tolerant collections compared with sensitive collection. In conclusion, common vetch response to P starvation by altering the expressions of core genes involved in Pi transport and signaling, and the elevated expression of VsPHT1.2 gene might contribute to higher Pi acquisition efficiency in P-deficiency tolerant collections.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.