Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Heedong Goh, Alex Krasnok, Andrea Alù
{"title":"Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas","authors":"Heedong Goh, Alex Krasnok, Andrea Alù","doi":"10.1515/nanoph-2024-0212","DOIUrl":null,"url":null,"abstract":"Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration. Here, we explore the use of tailored nonlinearities combined with geometric asymmetries in suitably tailored resonant nanoantennas. We demonstrate that, under suitable design conditions, a nonlinear scatterer can be cloaked for one excitation direction, yet strongly scatters when excited at the same frequency and intensity from the opposite direction. This nonreciprocal scattering phenomenon opens opportunities for nonlinear nanophotonics, asymmetric imaging and visibility, all-optical signal processing and directional sensing.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"40 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0212","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration. Here, we explore the use of tailored nonlinearities combined with geometric asymmetries in suitably tailored resonant nanoantennas. We demonstrate that, under suitable design conditions, a nonlinear scatterer can be cloaked for one excitation direction, yet strongly scatters when excited at the same frequency and intensity from the opposite direction. This nonreciprocal scattering phenomenon opens opportunities for nonlinear nanophotonics, asymmetric imaging and visibility, all-optical signal processing and directional sensing.
非线性纳米天线中的非互易散射和单向隐形
互向散射体从相反方向激发时,必然会熄灭相同数量的入射光。这一特性意味着,不可能实现从一个方向激发时是透明的,但在相反方向激发时却能散射和吸收光的散射体,从而限制了非对称成像和纳米光子电路的应用机会。这种互易性限制可以通过打破时间反向对称性的外部偏压来克服,但这给实际应用和集成带来了挑战。在这里,我们探讨了在适当定制的谐振纳米天线中使用定制非线性与几何不对称相结合的方法。我们证明,在合适的设计条件下,非线性散射体可以在一个激励方向上隐身,但在相同频率和强度下从相反方向激励时会产生强烈的散射。这种非互易散射现象为非线性纳米光子学、非对称成像和可视性、全光信号处理和定向传感带来了机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信