{"title":"Multicategory fire damage detection of post‐fire reinforced concrete structural components","authors":"Pengfei Wang, Caiwei Liu, Xinyu Wang, Libin Tian, Jijun Miao, Yanchun Liu","doi":"10.1111/mice.13314","DOIUrl":null,"url":null,"abstract":"This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"10 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13314","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.