{"title":"A neural network-based automated methodology to identify the crack causes in masonry structures","authors":"A. Iannuzzo, V. Musone, E. Ruocco","doi":"10.1111/mice.13311","DOIUrl":null,"url":null,"abstract":"Most masonry constructions exhibit significant crack patterns caused by differential foundation settlements. While modern numerical methods effectively address forward displacement-based problems, identifying the settlement causing a specific crack pattern remains an unsolved yet crucial challenge. For the first time, this research solves this highly non-linear back-engineering problem by proposing a robust and automated methodology synergizing artificial neural networks (ANNs) and the piecewise rigid displacement (PRD) method. The PRD's fast computational solving allows the generation of large datasets used to train specific ANNs through Levenberg–Marquardt and conjugate gradient algorithms. Using the location and widths of the main structural cracks as input, the proposed approach offers an instantaneous and accurate ANN-based identification of foundation settlements that cause the detected damage scenario. The method is first validated on semicircular arches, and after that, its potential and effectiveness are demonstrated in a real engineering scenario, represented by the Deba bridge in Spain.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"22 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13311","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Most masonry constructions exhibit significant crack patterns caused by differential foundation settlements. While modern numerical methods effectively address forward displacement-based problems, identifying the settlement causing a specific crack pattern remains an unsolved yet crucial challenge. For the first time, this research solves this highly non-linear back-engineering problem by proposing a robust and automated methodology synergizing artificial neural networks (ANNs) and the piecewise rigid displacement (PRD) method. The PRD's fast computational solving allows the generation of large datasets used to train specific ANNs through Levenberg–Marquardt and conjugate gradient algorithms. Using the location and widths of the main structural cracks as input, the proposed approach offers an instantaneous and accurate ANN-based identification of foundation settlements that cause the detected damage scenario. The method is first validated on semicircular arches, and after that, its potential and effectiveness are demonstrated in a real engineering scenario, represented by the Deba bridge in Spain.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.