Metal-regulated antibiotic resistance and its implications for antibiotic therapy

IF 5.7 2区 生物学
Zeling Xu, Xiaoshan Lin
{"title":"Metal-regulated antibiotic resistance and its implications for antibiotic therapy","authors":"Zeling Xu,&nbsp;Xiaoshan Lin","doi":"10.1111/1751-7915.14537","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic resistance, one of the major medical threats worldwide, can be selected and induced by metals through multiple mechanisms such as co-resistance, cross-resistance, and co-regulation. Compared with co-resistance and cross-resistance which are attributed to the physically or functionally linked metal and antibiotic resistance genes, co-regulation of antibiotic resistance genes by metal-responsive regulators and pathways is much more complex and elusive. Here, we discussed the main mechanisms by which antibiotic resistance is regulated in response to metals and showed recent attempts to combat antibiotic resistance by interfering with metal-based signalling pathways. Further efforts to depict the intricate metal-based regulatory network of antibiotic resistance will provide tremendous opportunities for the discovery of novel anti-resistance targets, and blocking or rewiring the metal-based signalling pathways is emerging as a promising stratagem to reverse bacterial resistance to antibiotics and rejuvenate the efficacy of conventional antibiotics.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance, one of the major medical threats worldwide, can be selected and induced by metals through multiple mechanisms such as co-resistance, cross-resistance, and co-regulation. Compared with co-resistance and cross-resistance which are attributed to the physically or functionally linked metal and antibiotic resistance genes, co-regulation of antibiotic resistance genes by metal-responsive regulators and pathways is much more complex and elusive. Here, we discussed the main mechanisms by which antibiotic resistance is regulated in response to metals and showed recent attempts to combat antibiotic resistance by interfering with metal-based signalling pathways. Further efforts to depict the intricate metal-based regulatory network of antibiotic resistance will provide tremendous opportunities for the discovery of novel anti-resistance targets, and blocking or rewiring the metal-based signalling pathways is emerging as a promising stratagem to reverse bacterial resistance to antibiotics and rejuvenate the efficacy of conventional antibiotics.

Abstract Image

金属调节的抗生素耐药性及其对抗生素治疗的影响。
抗生素耐药性是全球面临的主要医学威胁之一,金属可通过多种机制选择和诱导抗生素耐药性,如共同耐药性、交叉耐药性和共同调控。与金属和抗生素抗性基因在物理或功能上相互关联所导致的共抗性和交叉抗性相比,金属响应调控因子和途径对抗生素抗性基因的共调控则更为复杂和难以捉摸。在此,我们讨论了抗生素耐药性受金属调控的主要机制,并展示了最近通过干扰基于金属的信号通路来对抗抗生素耐药性的尝试。进一步努力描绘抗生素耐药性的复杂金属调控网络,将为发现新型抗耐药性靶点提供巨大的机会,阻断或重新连接金属信号通路正在成为扭转细菌对抗生素的耐药性和恢复传统抗生素疗效的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信