Self-defending mechanism of C/TaC‒SiC composites under 2100°C cyclic ablation environment

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Mingde Tong, Xinhao Shi, Tao Feng, Ying Dai, Pengfei He
{"title":"Self-defending mechanism of C/TaC‒SiC composites under 2100°C cyclic ablation environment","authors":"Mingde Tong,&nbsp;Xinhao Shi,&nbsp;Tao Feng,&nbsp;Ying Dai,&nbsp;Pengfei He","doi":"10.1111/ijac.14867","DOIUrl":null,"url":null,"abstract":"<p>To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta<sub>2</sub>O<sub>5</sub> and Ta<sub>2</sub>O<sub>5</sub> being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta<sub>2</sub>O<sub>5</sub> from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta<sub>2</sub>O<sub>5</sub> covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4127-4145"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14867","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve the repeatability of aerospace thermal components, C/TaC‒SiC composites were fabricated. Cycle ablation and bending tests were carried out. After 3 × 60 s of ablation beyond 2100°C, the mechanical property retention rate was 80.9%. Interestingly, a reaction similar to “ouroboros ring,” in which the cyclic reactions of “TaC being oxidized to Ta2O5 and Ta2O5 being reduced to TaC,” occurred in the central ablation region of C/TaC‒SiC composites. On the one hand, the continuous generation of TaC could prevent liquid state Ta2O5 from being blown off central ablation region, playing a similar role in “water and soil conservation.” On the other hand, liquid Ta2O5 covered the surface of C/TaC‒SiC composites during ablation process, contributing to block the inward permeation of oxidized gases. In addition, novel “Grotto” structures were detected in the transitional ablation region of C/TaC‒SiC composites. The formation reason of the “Grotto” structure has also been discussed.

2100°C 循环烧蚀环境下 C/TaC-SiC 复合材料的自防御机制
为了实现航空热部件的可重复性,制作了 C/TaC-SiC 复合材料。进行了循环烧蚀和弯曲试验。在 2100°C 以上烧蚀 3 × 60 秒后,机械性能保持率为 80.9%。有趣的是,C/TaC-SiC 复合材料的中心烧蚀区域发生了类似于 "乌龙环 "的反应,即 "TaC 被氧化成 Ta2O5,Ta2O5 被还原成 TaC "的循环反应。一方面,TaC 的不断生成可以防止液态 Ta2O5 被吹离中心烧蚀区,起到类似于 "水土保持 "的作用。另一方面,液态 Ta2O5 在烧蚀过程中覆盖在 C/TaC-SiC 复合材料表面,有助于阻止氧化气体向内渗透。此外,在 C/TaC-SiC 复合材料的过渡烧蚀区域还发现了新颖的 "石窟 "结构。此外,还讨论了 "Grotto "结构的形成原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信