{"title":"Clinical features and associated factors of impaired ventilatory efficiency: findings from the ECOPD study in China.","authors":"Zhishan Deng, Fan Wu, Qi Wan, Cuiqiong Dai, Lifei Lu, Jieqi Peng, Kunning Zhou, Xiaohui Wu, Gaoying Tang, Suyin Huang, Guannan Cai, Peiyu Huang, Zihui Wang, Youlan Zheng, Huajing Yang, Ningning Zhao, Shan Xiao, Xiang Wen, Ruiting Sun, Changli Yang, Yongqing Huang, Rongchang Chen, Yumin Zhou, Pixin Ran","doi":"10.1136/bmjresp-2024-002320","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impaired ventilatory efficiency during exercise is a predictor of mortality in chronic obstructive pulmonary disease. However, little is known about the clinical features and associated factors of impaired ventilatory efficiency in China.</p><p><strong>Methods: </strong>We conducted a cross-sectional community-based study in China and collected demographic and clinical information, cardiopulmonary exercise testing, spirometry, and CT data. Impaired ventilatory efficiency was defined by a nadir ventilatory equivalent for CO<sub>2</sub> production above the upper limit of normal. Multivariable linear and logistic regression models were used to explore the clinical features and associated factors of impaired ventilatory efficiency.</p><p><strong>Results: </strong>The final analyses included 941 subjects, 702 (74.6%) of whom had normal ventilatory efficiency and 239 (25.4%) had impaired ventilatory efficiency. Participants with impaired ventilatory efficiency had more chronic respiratory symptoms, poorer lung function and exercise capacity, and more severe emphysema (natural logarithm transformation of the low-attenuation area of the lung with attenuation values below -950 Hounsfield units, logLAA<sub>-950</sub>: 0.19±0.65 vs -0.28±0.63, p<0.001) and air trapping (logLAA<sub>-856</sub>: 1.03±0.65 vs 0.68±0.70, p<0.001) than those with normal ventilatory efficiency. Older age (60-69 years, OR 3.10 (95% CI 1.33 to 7.21), p=0.009 and 70-80 years, OR 6.48 (95% CI 2.56 to 16.43), p<0.001 vs 40-49 years) and smoking (former, OR 3.19 (95% CI 1.29 to 7.86), p=0.012; current, OR 4.27 (95% CI 1.78 to 10.24), p=0.001 vs never) were identified as high risk factors of impaired ventilatory efficiency.</p><p><strong>Conclusions: </strong>Impaired ventilatory efficiency was associated with poorer respiratory characteristics. Longitudinal studies are warranted to explore the progression of individuals with impaired ventilatory efficiency.</p>","PeriodicalId":9048,"journal":{"name":"BMJ Open Respiratory Research","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjresp-2024-002320","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Impaired ventilatory efficiency during exercise is a predictor of mortality in chronic obstructive pulmonary disease. However, little is known about the clinical features and associated factors of impaired ventilatory efficiency in China.
Methods: We conducted a cross-sectional community-based study in China and collected demographic and clinical information, cardiopulmonary exercise testing, spirometry, and CT data. Impaired ventilatory efficiency was defined by a nadir ventilatory equivalent for CO2 production above the upper limit of normal. Multivariable linear and logistic regression models were used to explore the clinical features and associated factors of impaired ventilatory efficiency.
Results: The final analyses included 941 subjects, 702 (74.6%) of whom had normal ventilatory efficiency and 239 (25.4%) had impaired ventilatory efficiency. Participants with impaired ventilatory efficiency had more chronic respiratory symptoms, poorer lung function and exercise capacity, and more severe emphysema (natural logarithm transformation of the low-attenuation area of the lung with attenuation values below -950 Hounsfield units, logLAA-950: 0.19±0.65 vs -0.28±0.63, p<0.001) and air trapping (logLAA-856: 1.03±0.65 vs 0.68±0.70, p<0.001) than those with normal ventilatory efficiency. Older age (60-69 years, OR 3.10 (95% CI 1.33 to 7.21), p=0.009 and 70-80 years, OR 6.48 (95% CI 2.56 to 16.43), p<0.001 vs 40-49 years) and smoking (former, OR 3.19 (95% CI 1.29 to 7.86), p=0.012; current, OR 4.27 (95% CI 1.78 to 10.24), p=0.001 vs never) were identified as high risk factors of impaired ventilatory efficiency.
Conclusions: Impaired ventilatory efficiency was associated with poorer respiratory characteristics. Longitudinal studies are warranted to explore the progression of individuals with impaired ventilatory efficiency.
期刊介绍:
BMJ Open Respiratory Research is a peer-reviewed, open access journal publishing respiratory and critical care medicine. It is the sister journal to Thorax and co-owned by the British Thoracic Society and BMJ. The journal focuses on robustness of methodology and scientific rigour with less emphasis on novelty or perceived impact. BMJ Open Respiratory Research operates a rapid review process, with continuous publication online, ensuring timely, up-to-date research is available worldwide. The journal publishes review articles and all research study types: Basic science including laboratory based experiments and animal models, Pilot studies or proof of concept, Observational studies, Study protocols, Registries, Clinical trials from phase I to multicentre randomised clinical trials, Systematic reviews and meta-analyses.