Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antoine Kairis , Benjamin Das Neves , Jérémy Couturier , Claire Remacle , Nicolas Rouhier
{"title":"Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective","authors":"Antoine Kairis ,&nbsp;Benjamin Das Neves ,&nbsp;Jérémy Couturier ,&nbsp;Claire Remacle ,&nbsp;Nicolas Rouhier","doi":"10.1016/j.bbamcr.2024.119797","DOIUrl":null,"url":null,"abstract":"<div><p>About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first <em>de novo</em> synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119797"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016748892400140X/pdfft?md5=29b5a7e8c72afeb7e47322837e37384a&pid=1-s2.0-S016748892400140X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748892400140X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.

质体中通过 SUF 系统合成铁硫簇:从机理和结构角度看
在光合真核生物的质体中表达的约 50 种蛋白质可连接铁硫(FeS)簇,确保其在光合作用、硫和氮同化以及色素、维生素和激素合成过程中发挥重要功能。这些通过共翻译或翻译后结合到这些蛋白质中的 FeS 簇的合成依赖于属于所谓的硫动员(SUF)机制的几种蛋白质。首先在一个支架蛋白复合物上从头合成一个铁硫簇,然后再由其他后期作用的成熟因子对该簇进行特异性转移、可能的转换和插入目标受体蛋白。在这篇综述中,我们将总结目前已知的负责合成和转移步骤的分子机制,尤其侧重于形成所需蛋白质复合物的结构方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信