Effect of cross-sectional geometry, area, and solid-fluid interaction strength on liquid droplets and bridges inside nanopores

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Gopi Kundia, Kaustubh Rane
{"title":"Effect of cross-sectional geometry, area, and solid-fluid interaction strength on liquid droplets and bridges inside nanopores","authors":"Gopi Kundia,&nbsp;Kaustubh Rane","doi":"10.1016/j.fluid.2024.114180","DOIUrl":null,"url":null,"abstract":"<div><p>We use molecular dynamics simulations to study liquid droplets and bridges inside crystalline pores having triangular, square, hexagonal, and circular cross-sections of varying dimensions. The role of wettability is also investigated by varying solid-fluid interaction strengths. We analyze the stability of liquid droplet or bridge, the density distribution within a droplet or bridge, and the propensity of liquid to occupy corners of polygonal cross-sections of pores. The solid-fluid interfacial free energies calculated from Monte Carlo simulations and a thermodynamic model are used to estimate the free energy change of liquid occupying the corners of a pore. Liquid droplets and liquid bridges are observed for weakly and strongly attractive nanopores, respectively. Both droplets and bridges are unstable inside nanopores having the largest cross-sectional dimension smaller than 10 molecular diameters. Both the liquid configurations are more unstable inside nanopores having hexagonal cross-sections. The propensity of liquid to occupy the corners of a polygonal cross-section of a nanopore decreases with decrease in the number of sides of the polygon.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"586 ","pages":"Article 114180"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001560","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We use molecular dynamics simulations to study liquid droplets and bridges inside crystalline pores having triangular, square, hexagonal, and circular cross-sections of varying dimensions. The role of wettability is also investigated by varying solid-fluid interaction strengths. We analyze the stability of liquid droplet or bridge, the density distribution within a droplet or bridge, and the propensity of liquid to occupy corners of polygonal cross-sections of pores. The solid-fluid interfacial free energies calculated from Monte Carlo simulations and a thermodynamic model are used to estimate the free energy change of liquid occupying the corners of a pore. Liquid droplets and liquid bridges are observed for weakly and strongly attractive nanopores, respectively. Both droplets and bridges are unstable inside nanopores having the largest cross-sectional dimension smaller than 10 molecular diameters. Both the liquid configurations are more unstable inside nanopores having hexagonal cross-sections. The propensity of liquid to occupy the corners of a polygonal cross-section of a nanopore decreases with decrease in the number of sides of the polygon.

横截面几何形状、面积和固液相互作用强度对纳米孔内液滴和液桥的影响
我们利用分子动力学模拟研究了不同尺寸的三角形、方形、六角形和圆形截面结晶孔内的液滴和液桥。我们还通过不同的固液相互作用强度研究了润湿性的作用。我们分析了液滴或液桥的稳定性、液滴或液桥内部的密度分布以及液体占据多角形截面孔隙边角的倾向。利用蒙特卡罗模拟和热力学模型计算出的固液界面自由能来估算液体占据孔隙角落的自由能变化。在弱吸引力和强吸引力纳米孔中分别观察到液滴和液桥。在最大横截面尺寸小于 10 个分子直径的纳米孔内,液滴和液桥都不稳定。在横截面为六边形的纳米孔内,两种液体构型都更不稳定。液体占据纳米孔多边形横截面边角的倾向随着多边形边数的减少而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信