A synchronous-twisting method to realize radial scalability in fibrous energy storage devices

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhenyu Zhou, Sijie Xie, Heng Cai, Alejandro N. Colli, Wouter Monnens, Qichong Zhang, Wei Guo, Wei Zhang, Ning Han, Hongwei Pan, Xueliang Zhang, Hui Pan, Zhenhong Xue, Xuan Zhang, Yagang Yao, Jin Zhang, Jan Fransaer
{"title":"A synchronous-twisting method to realize radial scalability in fibrous energy storage devices","authors":"Zhenyu Zhou,&nbsp;Sijie Xie,&nbsp;Heng Cai,&nbsp;Alejandro N. Colli,&nbsp;Wouter Monnens,&nbsp;Qichong Zhang,&nbsp;Wei Guo,&nbsp;Wei Zhang,&nbsp;Ning Han,&nbsp;Hongwei Pan,&nbsp;Xueliang Zhang,&nbsp;Hui Pan,&nbsp;Zhenhong Xue,&nbsp;Xuan Zhang,&nbsp;Yagang Yao,&nbsp;Jin Zhang,&nbsp;Jan Fransaer","doi":"10.1126/sciadv.ado7826","DOIUrl":null,"url":null,"abstract":"<div >For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO<sub>2</sub> batteries and MoS<sub>2</sub>-MnO<sub>2</sub> supercapacitors with a diameter of ~500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter<sup>−1</sup> for Zn-MnO<sub>2</sub> batteries and ~107 Wh liter<sup>−1</sup> for MoS<sub>2</sub>-MnO<sub>2</sub> supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 29","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado7826","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado7826","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 μm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter−1 for Zn-MnO2 batteries and ~107 Wh liter−1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

Abstract Image

实现纤维储能装置径向可扩展性的同步扭转法。
对于可穿戴电子设备而言,径向可扩展性是纤维储能设备实现商业化的关键研究领域之一,但由于缺乏有效的方法和配置安排,这一领域已被搁置多年。在此,研究小组提出了一种可通用的策略,通过应用同步扭转法(STM)合成同轴可扩展配置(CEC)来实现径向可扩展性。例如,我们制作了直径约为 500 μm、长度为 100 cm 的水纤维状 Zn-MnO2 电池和 MoS2-MnO2 超级电容器。由于 CEC 具有径向可扩展性、均匀的电流分布和稳定的结合力,这些器件不仅具有高能量密度(Zn-MnO2 电池约为 316 Wh 升-1,MoS2-MnO2 超级电容器约为 107 Wh 升-1),而且在施加外部弯曲和拉伸力时仍能在纺织品中保持稳定的工作状态。该装置的制造方法和径向可扩展性为未来的纤维状储能装置提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信