Application of efficient algorithm based on block Newton method to elastoplastic problems with nonlinear kinematic hardening

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Takeki Yamamoto, Takahiro Yamada, Kazumi Matsui
{"title":"Application of efficient algorithm based on block Newton method to elastoplastic problems with nonlinear kinematic hardening","authors":"Takeki Yamamoto, Takahiro Yamada, Kazumi Matsui","doi":"10.1108/ec-11-2023-0868","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to present the effectiveness and robustness of a numerical algorithm based on the block Newton method for the nonlinear kinematic hardening rules adopted in modeling ductile materials.Design/methodology/approachElastoplastic problems can be defined as a coupled problem of the equilibrium equation for the overall structure and the yield equations for the stress state at every material point. When applying the Newton method to the coupled residual equations, the displacement field and the internal variables, which represent the plastic deformation, are updated simultaneously.FindingsThe presented numerical scheme leads to an explicit form of the hardening behavior, which includes the evolution of the equivalent plastic strain and the back stress, with the internal variables. The features of the present approach allow the displacement field and the hardening behavior to be updated straightforwardly. Thus, the scheme does not have any local iterative calculations and enables us to simultaneously decrease the residuals in the coupled boundary value problems.Originality/valueA pseudo-stress for the local residual and an algebraically derived consistent tangent are applied to elastic-plastic boundary value problems with nonlinear kinematic hardening. The numerical procedure incorporating the block Newton method ensures a quadratic rate of asymptotic convergence of a computationally efficient solution scheme. The proposed algorithm provides an efficient and robust computation in the elastoplastic analysis of ductile materials. Numerical examples under elaborate loading conditions demonstrate the effectiveness and robustness of the numerical scheme implemented in the finite element analysis.","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-11-2023-0868","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe purpose of this study is to present the effectiveness and robustness of a numerical algorithm based on the block Newton method for the nonlinear kinematic hardening rules adopted in modeling ductile materials.Design/methodology/approachElastoplastic problems can be defined as a coupled problem of the equilibrium equation for the overall structure and the yield equations for the stress state at every material point. When applying the Newton method to the coupled residual equations, the displacement field and the internal variables, which represent the plastic deformation, are updated simultaneously.FindingsThe presented numerical scheme leads to an explicit form of the hardening behavior, which includes the evolution of the equivalent plastic strain and the back stress, with the internal variables. The features of the present approach allow the displacement field and the hardening behavior to be updated straightforwardly. Thus, the scheme does not have any local iterative calculations and enables us to simultaneously decrease the residuals in the coupled boundary value problems.Originality/valueA pseudo-stress for the local residual and an algebraically derived consistent tangent are applied to elastic-plastic boundary value problems with nonlinear kinematic hardening. The numerical procedure incorporating the block Newton method ensures a quadratic rate of asymptotic convergence of a computationally efficient solution scheme. The proposed algorithm provides an efficient and robust computation in the elastoplastic analysis of ductile materials. Numerical examples under elaborate loading conditions demonstrate the effectiveness and robustness of the numerical scheme implemented in the finite element analysis.
基于分块牛顿法的高效算法在非线性运动硬化弹塑性问题中的应用
本研究的目的是介绍一种基于分块牛顿法的数值算法的有效性和稳健性,该算法适用于韧性材料建模中采用的非线性运动硬化规则。将牛顿法应用于耦合残差方程时,位移场和代表塑性变形的内部变量将同时更新。研究结果所提出的数值方案可得出硬化行为的明确形式,其中包括等效塑性应变和背应力以及内部变量的演变。本方法的特点是可以直接更新位移场和硬化行为。因此,该方案不需要任何局部迭代计算,并使我们能够同时减少耦合边界值问题中的残差。结合分块牛顿法的数值程序确保了计算效率高的求解方案的渐近收敛率为二次方。所提出的算法为韧性材料的弹塑性分析提供了高效、稳健的计算方法。精心设计的加载条件下的数值示例证明了在有限元分析中实施的数值方案的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信