State space reconstruction of Markov chains via autocorrelation structure

Antal Jakovác, M. T. Kurbucz, András Telcs
{"title":"State space reconstruction of Markov chains via autocorrelation structure","authors":"Antal Jakovác, M. T. Kurbucz, András Telcs","doi":"10.1088/1751-8121/ad6224","DOIUrl":null,"url":null,"abstract":"\n Understanding the state space of observed Markov processes is essential for advancing causal inference in a wide range of scientific fields. This paper demonstrates how the previously unknown state space can be reconstructed by exploring the spectrum of the time-delay embedding matrix derived from the autocorrelation sequence of the observed series. It also highlights that the eigenvector associated with the smallest eigenvalue can provide valuable insights into the hidden data generation process itself. The presented results provide a deeper understanding of the complex dynamics of Markov chains and hold promise for enhancing various scientific applications.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"143 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the state space of observed Markov processes is essential for advancing causal inference in a wide range of scientific fields. This paper demonstrates how the previously unknown state space can be reconstructed by exploring the spectrum of the time-delay embedding matrix derived from the autocorrelation sequence of the observed series. It also highlights that the eigenvector associated with the smallest eigenvalue can provide valuable insights into the hidden data generation process itself. The presented results provide a deeper understanding of the complex dynamics of Markov chains and hold promise for enhancing various scientific applications.
通过自相关结构重构马尔可夫链的状态空间
了解观测马尔可夫过程的状态空间,对于推进众多科学领域的因果推理至关重要。本文展示了如何通过探索从观测序列的自相关序列导出的时延嵌入矩阵的频谱来重建先前未知的状态空间。论文还强调,与最小特征值相关的特征向量可以为了解隐藏数据生成过程本身提供有价值的信息。这些结果加深了人们对马尔可夫链复杂动力学的理解,并有望提高各种科学应用水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信