Huangwei Zhang, Yidan Zhang, Chen Cao, Wanli Zhao, Kai Huang, Yi Zhang, Yue Shen, Zhen Li and Yunhui Huang
{"title":"Lithium–sulfur pouch cells with 99% capacity retention for 1000 cycles†","authors":"Huangwei Zhang, Yidan Zhang, Chen Cao, Wanli Zhao, Kai Huang, Yi Zhang, Yue Shen, Zhen Li and Yunhui Huang","doi":"10.1039/D4EE02149E","DOIUrl":null,"url":null,"abstract":"<p >The lithium–sulfur (Li–S) battery is a highly promising candidate for next-generation battery systems. However, the shuttle effect of polysulfides or the dendrites and side reactions of lithium metal anodes limit the cycle life of batteries. In particular, at the pouch cell level, achieving long-term cycling stability is extremely challenging. Here, we have constructed a Li–S pouch cell with sulfurized pyrolyzed poly(acrylonitrile) (SPAN) as the cathode and graphite (Gr) as the anode, introducing lithium-ions through a facile <em>in situ</em> pre-lithiation method. In carbonate-based electrolytes, the SPAN cathode can avoid the shuttle effect, while the Gr anode can exclude the interference of lithium metal. By rationally controlling the cycling conditions to suppress the loss of active lithium and the increase in resistance, a SPAN‖Gr pouch cell with 1000 cycles and 99% capacity retention rate can be ultimately obtained. The A h-level pouch cell can stably cycle for 1031 times with 82% capacity retention rate and pass multiple safety tests. This design is expected to fundamentally improve the long-term cycling stability of Li–S pouch cells and it has great potential in the field of large scale energy storage due to its absence of transition metal elements.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 19","pages":" 7047-7057"},"PeriodicalIF":32.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02149e","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The lithium–sulfur (Li–S) battery is a highly promising candidate for next-generation battery systems. However, the shuttle effect of polysulfides or the dendrites and side reactions of lithium metal anodes limit the cycle life of batteries. In particular, at the pouch cell level, achieving long-term cycling stability is extremely challenging. Here, we have constructed a Li–S pouch cell with sulfurized pyrolyzed poly(acrylonitrile) (SPAN) as the cathode and graphite (Gr) as the anode, introducing lithium-ions through a facile in situ pre-lithiation method. In carbonate-based electrolytes, the SPAN cathode can avoid the shuttle effect, while the Gr anode can exclude the interference of lithium metal. By rationally controlling the cycling conditions to suppress the loss of active lithium and the increase in resistance, a SPAN‖Gr pouch cell with 1000 cycles and 99% capacity retention rate can be ultimately obtained. The A h-level pouch cell can stably cycle for 1031 times with 82% capacity retention rate and pass multiple safety tests. This design is expected to fundamentally improve the long-term cycling stability of Li–S pouch cells and it has great potential in the field of large scale energy storage due to its absence of transition metal elements.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).