Germination response to winter temperature changes with seed shape and length of temperature exposure

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2024-07-15 DOI:10.1002/ecy.4361
Laura M. Ladwig, Jonathan J. Henn, Karen A. Stahlheber, Scott J. Meiners
{"title":"Germination response to winter temperature changes with seed shape and length of temperature exposure","authors":"Laura M. Ladwig,&nbsp;Jonathan J. Henn,&nbsp;Karen A. Stahlheber,&nbsp;Scott J. Meiners","doi":"10.1002/ecy.4361","DOIUrl":null,"url":null,"abstract":"<p>In many regions, the climate is changing faster during winter than during the other seasons, and a loss of snow cover combined with increased temperature variability can expose overwintering organisms to harmful conditions. Understanding how species respond to these changes during critical developmental times, such as seed germination, helps us assess the ecological implications of winter climate change. To address this concern, we measured the breaking of seed dormancy and cold tolerance of temperate grassland species in the lab and field. In the lab, we ran germination trials testing the tolerance of 17 species to an extreme cold event. In the field, we deployed seeds of two species within a snow manipulation experiment at three locations and measured germination success biweekly from seeds subjected to ambient and reduced snow cover from winter into spring. From lab trials, cold tolerance varied among species, with seed germination decreasing &lt;10%–100% following extreme cold events. Cold tolerance was related to seed traits, specifically less round seeds, seeds that required cold stratification, and seeds that mature later in the season tended to be more impacted by extreme cold temperatures. This variation in seed cold tolerance may contribute to altered community composition with continued winter climate change. In the field, germination increased through late winter, coinciding with the accumulation of days where temperatures were favorable for cold stratification. Through spring, germination success decreased as warm temperatures accumulated. Collectively, species-specific seed cold tolerances and mortality rates may contribute to compositional changes in grasslands under continued winter climate change.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4361","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In many regions, the climate is changing faster during winter than during the other seasons, and a loss of snow cover combined with increased temperature variability can expose overwintering organisms to harmful conditions. Understanding how species respond to these changes during critical developmental times, such as seed germination, helps us assess the ecological implications of winter climate change. To address this concern, we measured the breaking of seed dormancy and cold tolerance of temperate grassland species in the lab and field. In the lab, we ran germination trials testing the tolerance of 17 species to an extreme cold event. In the field, we deployed seeds of two species within a snow manipulation experiment at three locations and measured germination success biweekly from seeds subjected to ambient and reduced snow cover from winter into spring. From lab trials, cold tolerance varied among species, with seed germination decreasing <10%–100% following extreme cold events. Cold tolerance was related to seed traits, specifically less round seeds, seeds that required cold stratification, and seeds that mature later in the season tended to be more impacted by extreme cold temperatures. This variation in seed cold tolerance may contribute to altered community composition with continued winter climate change. In the field, germination increased through late winter, coinciding with the accumulation of days where temperatures were favorable for cold stratification. Through spring, germination success decreased as warm temperatures accumulated. Collectively, species-specific seed cold tolerances and mortality rates may contribute to compositional changes in grasslands under continued winter climate change.

发芽对冬季温度的反应随种子形状和温度暴露时间的长短而变化。
在许多地区,冬季的气候变化比其他季节更快,积雪覆盖的减少加上温度变化的增加会使越冬生物暴露在有害的环境中。了解物种在种子萌发等关键发育时期如何应对这些变化,有助于我们评估冬季气候变化对生态的影响。为了解决这个问题,我们在实验室和野外测量了温带草原物种种子休眠的打破情况和耐寒性。在实验室中,我们进行了发芽试验,测试 17 个物种对极端寒冷事件的耐受性。在野外,我们将两个物种的种子播撒在三个地点的积雪操纵实验中,从冬季到春季,每两周测量一次种子在环境和减少积雪覆盖情况下的发芽成功率。从实验室试验来看,不同物种的耐寒性各不相同,种子萌发率下降
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信