Braden W. Eberhard , Kathryn J. Gray , David W. Bates , Vesela P. Kovacheva
{"title":"Deep survival analysis for interpretable time-varying prediction of preeclampsia risk","authors":"Braden W. Eberhard , Kathryn J. Gray , David W. Bates , Vesela P. Kovacheva","doi":"10.1016/j.jbi.2024.104688","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Survival analysis is widely utilized in healthcare to predict the timing of disease onset. Traditional methods of survival analysis are usually based on Cox Proportional Hazards model and assume proportional risk for all subjects. However, this assumption is rarely true for most diseases, as the underlying factors have complex, non-linear, and time-varying relationships. This concern is especially relevant for pregnancy, where the risk for pregnancy-related complications, such as preeclampsia, varies across gestation. Recently, deep learning survival models have shown promise in addressing the limitations of classical models, as the novel models allow for non-proportional risk handling, capturing nonlinear relationships, and navigating complex temporal dynamics.</p></div><div><h3>Methods</h3><p>We present a methodology to model the temporal risk of preeclampsia during pregnancy and investigate the associated clinical risk factors. We utilized a retrospective dataset including 66,425 pregnant individuals who delivered in two tertiary care centers from 2015 to 2023. We modeled the preeclampsia risk by modifying DeepHit, a deep survival model, which leverages neural network architecture to capture time-varying relationships between covariates in pregnancy. We applied time series k-means clustering to DeepHit’s normalized output and investigated interpretability using Shapley values.</p></div><div><h3>Results</h3><p>We demonstrate that DeepHit can effectively handle high-dimensional data and evolving risk hazards over time with performance similar to the Cox Proportional Hazards model, achieving an area under the curve (AUC) of 0.78 for both models. The deep survival model outperformed traditional methodology by identifying time-varied risk trajectories for preeclampsia, providing insights for early and individualized intervention. K-means clustering resulted in patients delineating into low-risk, early-onset, and late-onset preeclampsia groups—notably, each of those has distinct risk factors.</p></div><div><h3>Conclusion</h3><p>This work demonstrates a novel application of deep survival analysis in time-varying prediction of preeclampsia risk. Our results highlight the advantage of deep survival models compared to Cox Proportional Hazards models in providing personalized risk trajectory and demonstrating the potential of deep survival models to generate interpretable and meaningful clinical applications in medicine.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"156 ","pages":"Article 104688"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Survival analysis is widely utilized in healthcare to predict the timing of disease onset. Traditional methods of survival analysis are usually based on Cox Proportional Hazards model and assume proportional risk for all subjects. However, this assumption is rarely true for most diseases, as the underlying factors have complex, non-linear, and time-varying relationships. This concern is especially relevant for pregnancy, where the risk for pregnancy-related complications, such as preeclampsia, varies across gestation. Recently, deep learning survival models have shown promise in addressing the limitations of classical models, as the novel models allow for non-proportional risk handling, capturing nonlinear relationships, and navigating complex temporal dynamics.
Methods
We present a methodology to model the temporal risk of preeclampsia during pregnancy and investigate the associated clinical risk factors. We utilized a retrospective dataset including 66,425 pregnant individuals who delivered in two tertiary care centers from 2015 to 2023. We modeled the preeclampsia risk by modifying DeepHit, a deep survival model, which leverages neural network architecture to capture time-varying relationships between covariates in pregnancy. We applied time series k-means clustering to DeepHit’s normalized output and investigated interpretability using Shapley values.
Results
We demonstrate that DeepHit can effectively handle high-dimensional data and evolving risk hazards over time with performance similar to the Cox Proportional Hazards model, achieving an area under the curve (AUC) of 0.78 for both models. The deep survival model outperformed traditional methodology by identifying time-varied risk trajectories for preeclampsia, providing insights for early and individualized intervention. K-means clustering resulted in patients delineating into low-risk, early-onset, and late-onset preeclampsia groups—notably, each of those has distinct risk factors.
Conclusion
This work demonstrates a novel application of deep survival analysis in time-varying prediction of preeclampsia risk. Our results highlight the advantage of deep survival models compared to Cox Proportional Hazards models in providing personalized risk trajectory and demonstrating the potential of deep survival models to generate interpretable and meaningful clinical applications in medicine.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.