Chawit Kaewnuratchadasorn, Jiaji Wang, Chul-Woo Kim
{"title":"Physics-informed neural operator solver and super-resolution for solid mechanics","authors":"Chawit Kaewnuratchadasorn, Jiaji Wang, Chul-Woo Kim","doi":"10.1111/mice.13292","DOIUrl":null,"url":null,"abstract":"<p>Physics-Informed Neural Networks (PINNs) have solved numerous mechanics problems by training to minimize the loss functions of governing partial differential equations (PDEs). Despite successful development of PINNs in various systems, computational efficiency and fidelity prediction have remained profound challenges. To fill such gaps, this study proposed a Physics-Informed Neural Operator Solver (PINOS) to achieve accurate and fast simulations without any required data set. The training of PINOS adopts a weak form based on the principle of least work for static simulations and a strong form for dynamic systems in solid mechanics. Results from numerical examples indicated that PINOS is capable of approximating solutions notably faster than the benchmarks of PINNs in both static an dynamic systems. The comparisons also showed that PINOS reached a convergence speed of over 20 times faster than finite element software in two-dimensional and three-dimensional static problems. Furthermore, this study examined the zero-shot super-resolution capability by developing Super-Resolution PINOS (SR-PINOS) that was trained on a coarse mesh and validated on fine mesh. The numerical results demonstrate the great performance of the model to obtain accurate solutions with a speed up, suggesting effectiveness in increasing sampling points and scaling a simulation. This study also discusses the differentiation methods of PINOS and SR-PINOS and suggests potential implementations related to forward applications for promising machine learning methods for structural designs and optimization.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 22","pages":"3435-3451"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13292","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-Informed Neural Networks (PINNs) have solved numerous mechanics problems by training to minimize the loss functions of governing partial differential equations (PDEs). Despite successful development of PINNs in various systems, computational efficiency and fidelity prediction have remained profound challenges. To fill such gaps, this study proposed a Physics-Informed Neural Operator Solver (PINOS) to achieve accurate and fast simulations without any required data set. The training of PINOS adopts a weak form based on the principle of least work for static simulations and a strong form for dynamic systems in solid mechanics. Results from numerical examples indicated that PINOS is capable of approximating solutions notably faster than the benchmarks of PINNs in both static an dynamic systems. The comparisons also showed that PINOS reached a convergence speed of over 20 times faster than finite element software in two-dimensional and three-dimensional static problems. Furthermore, this study examined the zero-shot super-resolution capability by developing Super-Resolution PINOS (SR-PINOS) that was trained on a coarse mesh and validated on fine mesh. The numerical results demonstrate the great performance of the model to obtain accurate solutions with a speed up, suggesting effectiveness in increasing sampling points and scaling a simulation. This study also discusses the differentiation methods of PINOS and SR-PINOS and suggests potential implementations related to forward applications for promising machine learning methods for structural designs and optimization.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.