{"title":"No more black-boxes: estimate deformation capacity of non-ductile RC shear walls based on generalized additive models","authors":"Zeynep Tuna Deger, Gulsen Taskin, John W. Wallace","doi":"10.1007/s10518-024-01968-z","DOIUrl":null,"url":null,"abstract":"<p>Machine learning techniques have gained attention in earthquake engineering for their accurate predictions, but their opaque black-box models create ambiguity in the decision-making process due to inherent complexity. To address this issue, numerous methods have been developed in the literature that attempt to elucidate and interpret black-box machine learning methods. However, many of these methods evaluate the decision-making processes of the relevant machine learning techniques based on their own criteria, leading to varying results across different approaches. Therefore, the critical significance of developing transparent and interpretable models, rather than describing black-box models, becomes particularly evident in fields such as earthquake engineering, where the interpretation of the physical implications of the problem holds paramount importance. Motivated by these considerations, this study aims to advance the field by developing a novel methodological approach that prioritizes transparency and interpretability in estimating the deformation capacity of non-ductile reinforced concrete shear walls based on an additive meta-model representation. Specifically, this model will leverage engineering knowledge to accurately predict the deformation capacity, utilizing a comprehensive dataset collected from various locations globally. Furthermore, the integration of uncertainty analysis within the proposed methodology facilitates a comprehensive investigation into the influence of individual shear wall variables and their interactions on deformation capacity, thereby enabling a detailed understanding of the relationship dynamics. The proposed model stands out by aligning with scientific knowledge, practicality, and interpretability without compromising its high level of accuracy.</p>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10518-024-01968-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques have gained attention in earthquake engineering for their accurate predictions, but their opaque black-box models create ambiguity in the decision-making process due to inherent complexity. To address this issue, numerous methods have been developed in the literature that attempt to elucidate and interpret black-box machine learning methods. However, many of these methods evaluate the decision-making processes of the relevant machine learning techniques based on their own criteria, leading to varying results across different approaches. Therefore, the critical significance of developing transparent and interpretable models, rather than describing black-box models, becomes particularly evident in fields such as earthquake engineering, where the interpretation of the physical implications of the problem holds paramount importance. Motivated by these considerations, this study aims to advance the field by developing a novel methodological approach that prioritizes transparency and interpretability in estimating the deformation capacity of non-ductile reinforced concrete shear walls based on an additive meta-model representation. Specifically, this model will leverage engineering knowledge to accurately predict the deformation capacity, utilizing a comprehensive dataset collected from various locations globally. Furthermore, the integration of uncertainty analysis within the proposed methodology facilitates a comprehensive investigation into the influence of individual shear wall variables and their interactions on deformation capacity, thereby enabling a detailed understanding of the relationship dynamics. The proposed model stands out by aligning with scientific knowledge, practicality, and interpretability without compromising its high level of accuracy.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.