A digital twin for parallel liquid-state nuclear magnetic resonance spectroscopy

Mengjia He, Dilara Faderl, Neil MacKinnon, Yen-Tse Cheng, Dominique Buyens, Mazin Jouda, Burkhard Luy, Jan G. Korvink
{"title":"A digital twin for parallel liquid-state nuclear magnetic resonance spectroscopy","authors":"Mengjia He, Dilara Faderl, Neil MacKinnon, Yen-Tse Cheng, Dominique Buyens, Mazin Jouda, Burkhard Luy, Jan G. Korvink","doi":"10.1038/s44172-024-00233-0","DOIUrl":null,"url":null,"abstract":"One approach to increasing nuclear magnetic resonance measurement sample throughput is to implement multiple, independent detection sites. However, the presence of radio frequency interference poses a challenge in multi-detector systems, particularly in unshielded coil arrays lacking sufficient electrical isolation. This issue can lead to unwanted coupling of inductive coils, resulting in excitation pulse interference and signal transfer among multiple detection sites. Here we propose a theoretical framework that combines electromagnetic simulation with spin-dynamic calculations. This framework enables the evaluation of coil coupling effects, the design of parallel pulse sequences to mitigate inter-channel coupling, and the separation of composite free induction decays obtained from multiple detectors. The parallel pulse compensation scheme was validated by a 2-channel parallel spectroscopy experiment. These results provide valuable insights for the design of parallel nuclear magnetic resonance hardware and for exploring the limits of parallelization capacity within a fixed magnet system. Mengjia He and colleagues mitigate unwanted interference between inductive coils in multi-detector nuclear magnetic resonance spectroscopy. Their framework enables a compensation mechanism and enhances the parallelisation capacity.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00233-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00233-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One approach to increasing nuclear magnetic resonance measurement sample throughput is to implement multiple, independent detection sites. However, the presence of radio frequency interference poses a challenge in multi-detector systems, particularly in unshielded coil arrays lacking sufficient electrical isolation. This issue can lead to unwanted coupling of inductive coils, resulting in excitation pulse interference and signal transfer among multiple detection sites. Here we propose a theoretical framework that combines electromagnetic simulation with spin-dynamic calculations. This framework enables the evaluation of coil coupling effects, the design of parallel pulse sequences to mitigate inter-channel coupling, and the separation of composite free induction decays obtained from multiple detectors. The parallel pulse compensation scheme was validated by a 2-channel parallel spectroscopy experiment. These results provide valuable insights for the design of parallel nuclear magnetic resonance hardware and for exploring the limits of parallelization capacity within a fixed magnet system. Mengjia He and colleagues mitigate unwanted interference between inductive coils in multi-detector nuclear magnetic resonance spectroscopy. Their framework enables a compensation mechanism and enhances the parallelisation capacity.

Abstract Image

用于并行液态核磁共振光谱分析的数字孪生系统
提高核磁共振测量样本吞吐量的一种方法是采用多个独立的检测点。然而,射频干扰的存在给多检测器系统带来了挑战,尤其是在缺乏足够电气隔离的非屏蔽线圈阵列中。这个问题会导致电感线圈产生不必要的耦合,造成激励脉冲干扰和多个检测点之间的信号传递。在此,我们提出了一个结合电磁模拟和自旋动力学计算的理论框架。通过这一框架,我们可以评估线圈耦合效应,设计并行脉冲序列以减轻通道间耦合,并分离从多个探测器获得的复合自由感应衰减。并行脉冲补偿方案通过双通道并行光谱实验进行了验证。这些结果为设计并行核磁共振硬件和探索固定磁体系统内并行化能力的极限提供了宝贵的见解。何孟佳及其同事减轻了多探头核磁共振光谱中电感线圈之间不必要的干扰。他们的框架实现了一种补偿机制,并提高了并行化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信