Muhammad Muaz Mushtaq, Maham Mushtaq, Husnain Ali, Muhammad Asad Sarwar, Syed Faqeer Hussain Bokhari
{"title":"Artificial intelligence and machine learning in peritoneal dialysis: a systematic review of clinical outcomes and predictive modeling.","authors":"Muhammad Muaz Mushtaq, Maham Mushtaq, Husnain Ali, Muhammad Asad Sarwar, Syed Faqeer Hussain Bokhari","doi":"10.1007/s11255-024-04144-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of artificial intelligence (AI) and machine learning (ML) in peritoneal dialysis (PD) presents transformative opportunities for optimizing treatment outcomes and informing clinical decision-making. This study aims to provide a comprehensive overview of the applications of AI/ML techniques in PD, focusing on their potential to predict clinical outcomes and enhance patient care.</p><p><strong>Materials and methods: </strong>This systematic review was conducted according to PRISMA guidelines (2020), searching key databases for articles on AI and ML applications in PD. The inclusion criteria were stringent, ensuring the selection of high-quality studies. The search strategy comprised MeSH terms and keywords related to PD, AI, and ML. 793 articles were identified, with nine ultimately meeting the inclusion criteria. The review utilized a narrative synthesis approach to summarize findings due to anticipated study heterogeneity.</p><p><strong>Results: </strong>Nine studies met the inclusion criteria. The studies varied in sample size and employed diverse AI and ML techniques, reflecting the breadth of data considered. Mortality prediction emerged as a recurrent theme, demonstrating the significance of AI and ML in prognostic accuracy. Predictive modeling extended to technique failure, hospital stay prediction, and pathogen-specific immune responses, showcasing the versatility of AI and ML applications in PD.</p><p><strong>Conclusions: </strong>This systematic review highlights the diverse applications of AI/ML in peritoneal dialysis, demonstrating their potential to enhance predictive accuracy, risk stratification, and decision support. However, limitations such as small sample sizes, single-center studies, and potential biases warrant further research and external validation. Future perspectives include integrating these AI/ML models into routine clinical practice and exploring additional use cases to improve patient outcomes and healthcare decision-making in PD.</p>","PeriodicalId":14454,"journal":{"name":"International Urology and Nephrology","volume":" ","pages":"3857-3867"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11255-024-04144-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The integration of artificial intelligence (AI) and machine learning (ML) in peritoneal dialysis (PD) presents transformative opportunities for optimizing treatment outcomes and informing clinical decision-making. This study aims to provide a comprehensive overview of the applications of AI/ML techniques in PD, focusing on their potential to predict clinical outcomes and enhance patient care.
Materials and methods: This systematic review was conducted according to PRISMA guidelines (2020), searching key databases for articles on AI and ML applications in PD. The inclusion criteria were stringent, ensuring the selection of high-quality studies. The search strategy comprised MeSH terms and keywords related to PD, AI, and ML. 793 articles were identified, with nine ultimately meeting the inclusion criteria. The review utilized a narrative synthesis approach to summarize findings due to anticipated study heterogeneity.
Results: Nine studies met the inclusion criteria. The studies varied in sample size and employed diverse AI and ML techniques, reflecting the breadth of data considered. Mortality prediction emerged as a recurrent theme, demonstrating the significance of AI and ML in prognostic accuracy. Predictive modeling extended to technique failure, hospital stay prediction, and pathogen-specific immune responses, showcasing the versatility of AI and ML applications in PD.
Conclusions: This systematic review highlights the diverse applications of AI/ML in peritoneal dialysis, demonstrating their potential to enhance predictive accuracy, risk stratification, and decision support. However, limitations such as small sample sizes, single-center studies, and potential biases warrant further research and external validation. Future perspectives include integrating these AI/ML models into routine clinical practice and exploring additional use cases to improve patient outcomes and healthcare decision-making in PD.
期刊介绍:
International Urology and Nephrology publishes original papers on a broad range of topics in urology, nephrology and andrology. The journal integrates papers originating from clinical practice.