Yang Yang, Shunli Ji, Xinyu Wang, Lanling Zeng, Yongzhao Zhan
{"title":"Generalized Welsch penalty for edge-aware image decomposition","authors":"Yang Yang, Shunli Ji, Xinyu Wang, Lanling Zeng, Yongzhao Zhan","doi":"10.1007/s00530-024-01382-0","DOIUrl":null,"url":null,"abstract":"<p>Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"174 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01382-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Edge-aware image decomposition is an essential topic in the field of multimedia signal processing. In this paper, we propose a novel non-convex penalty function, which we name the generalized Welsch function. We show that the proposed penalty function is more than a generalization of most existing penalty functions for edge-aware regularization, thus, it better facilitates edge-awareness. We embed the proposed penalty function into a novel optimization model for edge-aware image decomposition. To solve the optimization model with non-convex penalty function, we propose an efficient algorithm based on the additive quadratic minimization and Fourier domain optimization. We have experimented with the proposed method in a variety of tasks, including image smoothing, detail enhancement, HDR tone mapping, and JPEG compression artifact removal. Experiment results show that our method outperforms the state-of-the-art image decomposition methods. Furthermore, our method is highly efficient, it is able to render real-time processing of 720P color images on a modern GPU.
期刊介绍:
This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.