Illuminating the property space in crystal structure prediction using Quality-Diversity algorithms†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marta Wolinska, Aron Walsh and Antoine Cully
{"title":"Illuminating the property space in crystal structure prediction using Quality-Diversity algorithms†","authors":"Marta Wolinska, Aron Walsh and Antoine Cully","doi":"10.1039/D4DD00054D","DOIUrl":null,"url":null,"abstract":"<p >The identification of materials with exceptional properties is an essential objective to enable technological progress. We propose the application of Quality-Diversity algorithms to the field of crystal structure prediction. The objective of these algorithms is to identify a diverse set of high-performing solutions, which has been successful in a range of fields such as robotics, architecture and aeronautical engineering. As these methods rely on a high number of evaluations, we employ machine-learning surrogate models to compute the interatomic potential and material properties that are used to guide optimisation. Consequently, we also show the value of using neural networks to model crystal properties and enable the identification of novel composition–structure combinations. In this work, we specifically study the application of the MAP-Elites algorithm to predict polymorphs of TiO<small><sub>2</sub></small>. We rediscover the known ground state, in addition to a set of other polymorphs with distinct properties. We validate our method for C, SiO<small><sub>2</sub></small> and SiC systems, where we show that the algorithm can uncover multiple local minima with distinct electronic and mechanical properties.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 8","pages":" 1554-1563"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00054d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00054d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of materials with exceptional properties is an essential objective to enable technological progress. We propose the application of Quality-Diversity algorithms to the field of crystal structure prediction. The objective of these algorithms is to identify a diverse set of high-performing solutions, which has been successful in a range of fields such as robotics, architecture and aeronautical engineering. As these methods rely on a high number of evaluations, we employ machine-learning surrogate models to compute the interatomic potential and material properties that are used to guide optimisation. Consequently, we also show the value of using neural networks to model crystal properties and enable the identification of novel composition–structure combinations. In this work, we specifically study the application of the MAP-Elites algorithm to predict polymorphs of TiO2. We rediscover the known ground state, in addition to a set of other polymorphs with distinct properties. We validate our method for C, SiO2 and SiC systems, where we show that the algorithm can uncover multiple local minima with distinct electronic and mechanical properties.

Abstract Image

Abstract Image

利用质量多样性算法照亮晶体结构预测的属性空间
识别具有特殊性能的材料是实现技术进步的一个基本目标。我们建议将质量多样性算法应用于晶体结构预测领域。这些算法的目标是识别出一系列不同的高性能解决方案,这在机器人、建筑和航空工程等一系列领域都取得了成功。由于这些方法依赖于大量的评估,因此我们采用机器学习代用模型来计算原子间势能和材料特性,用于指导优化。因此,我们还展示了使用神经网络建立晶体属性模型的价值,并能识别新的成分结构组合。在这项工作中,我们特别研究了如何应用 MAP-Elites 算法预测二氧化钛的多晶体。我们重新发现了已知的基态,以及一系列具有独特性质的其他多晶体。我们对 C、SiO2 和 SiC 系统进行了验证,结果表明该算法可以发现具有不同电子和机械特性的多个局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信