Revealing accuracy in climate dynamics: enhancing evapotranspiration estimation using advanced quantile regression and machine learning models

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Saeed Sharafi, Mehdi Mohammadi Ghaleni
{"title":"Revealing accuracy in climate dynamics: enhancing evapotranspiration \nestimation using advanced quantile regression and machine learning models","authors":"Saeed Sharafi,&nbsp;Mehdi Mohammadi Ghaleni","doi":"10.1007/s13201-024-02211-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the effectiveness of various quantile regression (QR) and machine learning (ML) methodologies developed for analyzing the relationship between meteorological parameters and daily reference evapotranspiration (ET<sub>ref</sub>) across diverse climates in Iran spanning from 1987 to 2022. The analyzed models include D-vine copula-based quantile regression (DVQR), multivariate linear quantile regression (MLQR), Bayesian model averaging quantile regression (BMAQR), as well as machine learning algorithms such as extreme learning machine (ELM), random forest (RF), M5 model Tree (M5Tree), least squares support vector regression algorithm (LSSVR), and extreme gradient boosting (XGBoost). Additionally, empirical equations (EEs) such as Baier and Robertson (BARO), Jensen and Haise (JEHA), and Penman (PENM) models were considered. While the EEs demonstrated acceptable performance, the QR and ML models exhibited superior accuracy. Among these, the MLQR model displayed the highest accuracy compared to DVQR and BMAQR models. Moreover, LSSVR, XGBoost, and M5Tree models outperformed ELM and RF models. Notably, LSSVR, XGBoost, and MLQR models exhibited comparable performance (R2 and NSE &gt; 0.92, MBE and RMSE &lt; 0.5, and SI &gt; 0.05) to M5Tree and BMAQR models across all climates. Importantly, these models significantly outperformed EEs, DVQR, ELM, and RF models in all climates. In conclusion, high-dimensional QR and ML models are recommended as promising alternatives for accurately estimating daily ET<sub>ref</sub> in diverse global climate conditions.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"14 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02211-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02211-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the effectiveness of various quantile regression (QR) and machine learning (ML) methodologies developed for analyzing the relationship between meteorological parameters and daily reference evapotranspiration (ETref) across diverse climates in Iran spanning from 1987 to 2022. The analyzed models include D-vine copula-based quantile regression (DVQR), multivariate linear quantile regression (MLQR), Bayesian model averaging quantile regression (BMAQR), as well as machine learning algorithms such as extreme learning machine (ELM), random forest (RF), M5 model Tree (M5Tree), least squares support vector regression algorithm (LSSVR), and extreme gradient boosting (XGBoost). Additionally, empirical equations (EEs) such as Baier and Robertson (BARO), Jensen and Haise (JEHA), and Penman (PENM) models were considered. While the EEs demonstrated acceptable performance, the QR and ML models exhibited superior accuracy. Among these, the MLQR model displayed the highest accuracy compared to DVQR and BMAQR models. Moreover, LSSVR, XGBoost, and M5Tree models outperformed ELM and RF models. Notably, LSSVR, XGBoost, and MLQR models exhibited comparable performance (R2 and NSE > 0.92, MBE and RMSE < 0.5, and SI > 0.05) to M5Tree and BMAQR models across all climates. Importantly, these models significantly outperformed EEs, DVQR, ELM, and RF models in all climates. In conclusion, high-dimensional QR and ML models are recommended as promising alternatives for accurately estimating daily ETref in diverse global climate conditions.

Abstract Image

揭示气候动力学的准确性:利用先进的量子回归和机器学习模型提高蒸散量估算水平
本研究探讨了各种量化回归(QR)和机器学习(ML)方法在分析伊朗不同气候条件下气象参数与日参考蒸散量(ETref)之间关系时的有效性,时间跨度为 1987 年至 2022 年。分析的模型包括基于 D-vine copula 的量化回归(DVQR)、多元线性量化回归(MLQR)、贝叶斯模型平均量化回归(BMAQR),以及极端学习机(ELM)、随机森林(RF)、M5 模型树(M5Tree)、最小二乘支持向量回归算法(LSSVR)和极端梯度提升(XGBoost)等机器学习算法。此外,还考虑了经验方程 (EE),如 Baier 和 Robertson (BARO)、Jensen 和 Haise (JEHA) 以及 Penman (PENM) 模型。虽然 EE 的性能可以接受,但 QR 和 ML 模型的准确性更胜一筹。其中,与 DVQR 和 BMAQR 模型相比,MLQR 模型的准确度最高。此外,LSSVR、XGBoost 和 M5Tree 模型的表现优于 ELM 和 RF 模型。值得注意的是,在所有气候条件下,LSSVR、XGBoost 和 MLQR 模型的性能(R2 和 NSE >0.92、MBE 和 RMSE <0.5、SI >0.05)与 M5Tree 和 BMAQR 模型相当。重要的是,这些模型在所有气候条件下的表现都明显优于 EEs、DVQR、ELM 和 RF 模型。总之,建议将高维 QR 和 ML 模型作为在全球不同气候条件下准确估算日 ETref 的有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信