{"title":"ER stress-induced transcriptional response reveals tolerance genes in yeast","authors":"Jingrong Xie, Chufan Xiao, Yuyang Pan, Songlyu Xue, Mingtao Huang","doi":"10.1002/biot.202400082","DOIUrl":null,"url":null,"abstract":"<p><i>Saccharomyces cerevisiae</i> is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as <i>HMO1</i> and <i>BIO5</i>, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with <i>HMO1</i> overexpression <i>and BIO5</i> deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.
酿酒酵母对蛋白质分泌研究非常重要,但人们对内质网(ER)应激条件下蛋白质合成和分泌的复杂性仍不完全了解。由内质网蛋白质折叠环境改变引发的内质网应激给细胞带来了巨大挑战,尤其是在异源蛋白质生产过程中。在这项研究中,我们利用 RNA-seq 分析了酵母菌株对由曲尼霉素(Tm)或二硫苏糖醇(DTT)等试剂诱导的 ER 应激的转录反应。我们的基因表达分析发现了几个参与ER应激耐受性的关键基因,如HMO1和BIO5。通过代谢工程,HMO1过表达和BIO5缺失的最佳工程菌株R23表现出更强的ER胁迫耐受性和更高的蛋白质折叠效率,在Tm处理下α-淀粉酶产量增加了2.14倍,在DTT处理下细胞密度增加了2.04倍。我们的发现有助于理解细胞对ER应激的反应,并为进一步研究细胞水平的ER应激机制提供了基础。
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.