Classification of single extracellular vesicles in a double nanohole optical tweezer for cancer detection

Matthew Peters, Sina Halvaei, Tianyu Zhao, Annie Yang-Schulz, Karla C Williams, Reuven Gordon
{"title":"Classification of single extracellular vesicles in a double nanohole optical tweezer for cancer detection","authors":"Matthew Peters, Sina Halvaei, Tianyu Zhao, Annie Yang-Schulz, Karla C Williams, Reuven Gordon","doi":"10.1088/2515-7647/ad5776","DOIUrl":null,"url":null,"abstract":"\n A major challenge in cancer prognostics is finding biomarkers that can accurately identify cancer at early stages. Extracellular vesicles are promising biomarkers because they: contain cell specific information, are abundant in fluids, and have distinguishing features between cancerous and non-cancerous types. Fluorescent labelling is commonly used to detect extracellular vesicles but has challenges including achieving the desired specificity. Here, we demonstrate a label-free approach to classification of 3 different extracellular vesicle types, derived from non-malignant, non-invasive cancerous, and invasive cancerous cell lines. Using double nanohole optical tweezers, the scattering from single trapped extracellular vesicles is measured, and using a 1D convolutional neural network, we are able to classify the time series optical signal into its respective extracellular vesicle class. This is a promising first step towards early-stage label-free detection of cancers.","PeriodicalId":517326,"journal":{"name":"Journal of Physics: Photonics","volume":"120 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7647/ad5776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major challenge in cancer prognostics is finding biomarkers that can accurately identify cancer at early stages. Extracellular vesicles are promising biomarkers because they: contain cell specific information, are abundant in fluids, and have distinguishing features between cancerous and non-cancerous types. Fluorescent labelling is commonly used to detect extracellular vesicles but has challenges including achieving the desired specificity. Here, we demonstrate a label-free approach to classification of 3 different extracellular vesicle types, derived from non-malignant, non-invasive cancerous, and invasive cancerous cell lines. Using double nanohole optical tweezers, the scattering from single trapped extracellular vesicles is measured, and using a 1D convolutional neural network, we are able to classify the time series optical signal into its respective extracellular vesicle class. This is a promising first step towards early-stage label-free detection of cancers.
在双纳米孔光学镊子中对单个细胞外囊泡进行分类,用于癌症检测
癌症预后研究的一大挑战是找到能在早期阶段准确识别癌症的生物标记物。细胞外囊泡是很有前途的生物标记物,因为它们含有细胞特异性信息,在体液中含量丰富,而且具有区分癌症和非癌症类型的特征。荧光标记通常用于检测细胞外囊泡,但在实现所需的特异性等方面存在挑战。在这里,我们展示了一种无标记方法,用于对来自非恶性、非侵袭性癌症和侵袭性癌症细胞系的 3 种不同细胞外囊泡类型进行分类。我们使用双纳米孔光学镊子测量单个被困细胞外囊泡的散射,并使用一维卷积神经网络将时间序列光学信号分类为相应的细胞外囊泡类型。这是实现癌症早期无标记检测的第一步,前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信