A Modeling Study of ≥2 MeV Electron Fluxes in GEO at Different Prediction Time Scales Based on LSTM and Transformer Networks

Xiaojing Sun, Dedong Wang, A. Drozdov, Ruilin Lin, Artem Smirnov, Yuri Shprits, Siqing Liu, B. Luo, Xi Luo
{"title":"A Modeling Study of ≥2 MeV Electron Fluxes in GEO at Different Prediction Time Scales Based on LSTM and Transformer Networks","authors":"Xiaojing Sun, Dedong Wang, A. Drozdov, Ruilin Lin, Artem Smirnov, Yuri Shprits, Siqing Liu, B. Luo, Xi Luo","doi":"10.1051/swsc/2024021","DOIUrl":null,"url":null,"abstract":"In this study, we develop models to predict log10 of ≥2 MeV electron fluxes with 5-minute resolution at the geostationary orbit using the Long Short-Term Memory (LSTM) and transformer neural networks for next 1-hour, 3-hour, 6-hour, 12-hour, and 1-day predictions. The data of GOES-10 satellite from 2002 to 2003 are the training set, the data in 2004 are the validation set, and the data in 2005 are the test set. For different prediction time scales, different input combinations with four days as best offset time are tested and it is found that the transformer models perform better than the LSTM models, especially for higher flux values. The best combinations for the transformer models for next 1-hour, 3-hour, 6-hour, 12-hour, 1-day predictions are (log10 Flux, MLT), (log10 Flux, Bt, AE, SYM-H), (log10 Flux, N), (log10 Flux, N, Dst, Lm), and (log10 Flux, Pd, AE) with PE values of 0.940, 0.886, 0.828, 0.747, and 0.660 in 2005, respectively. When the low flux outliers of the ≥2 MeV electron fluxes are excluded, the PE (prediction efficiency) values for the 1-hour and 3-hour predictions increase to 0.958 and 0.900. By evaluating the prediction of ≥2 MeV electron daily and hourly fluences, the PE values of our transformer models are 0.857 and 0.961, respectively, higher than those of previous models. In addition, our models can be used for filling the data gaps of ≥2 MeV electron fluxes.","PeriodicalId":510580,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"140 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/swsc/2024021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we develop models to predict log10 of ≥2 MeV electron fluxes with 5-minute resolution at the geostationary orbit using the Long Short-Term Memory (LSTM) and transformer neural networks for next 1-hour, 3-hour, 6-hour, 12-hour, and 1-day predictions. The data of GOES-10 satellite from 2002 to 2003 are the training set, the data in 2004 are the validation set, and the data in 2005 are the test set. For different prediction time scales, different input combinations with four days as best offset time are tested and it is found that the transformer models perform better than the LSTM models, especially for higher flux values. The best combinations for the transformer models for next 1-hour, 3-hour, 6-hour, 12-hour, 1-day predictions are (log10 Flux, MLT), (log10 Flux, Bt, AE, SYM-H), (log10 Flux, N), (log10 Flux, N, Dst, Lm), and (log10 Flux, Pd, AE) with PE values of 0.940, 0.886, 0.828, 0.747, and 0.660 in 2005, respectively. When the low flux outliers of the ≥2 MeV electron fluxes are excluded, the PE (prediction efficiency) values for the 1-hour and 3-hour predictions increase to 0.958 and 0.900. By evaluating the prediction of ≥2 MeV electron daily and hourly fluences, the PE values of our transformer models are 0.857 and 0.961, respectively, higher than those of previous models. In addition, our models can be used for filling the data gaps of ≥2 MeV electron fluxes.
基于 LSTM 和变压器网络的不同预测时间尺度下地球同步轨道中 ≥2 MeV 电子通量的建模研究
在这项研究中,我们利用长短期记忆(LSTM)和变压器神经网络,建立了地球静止轨道上≥2 MeV电子通量对数10的预测模型,分辨率为5分钟,可对未来1小时、3小时、6小时、12小时和1天进行预测。2002 年至 2003 年的 GOES-10 卫星数据为训练集,2004 年的数据为验证集,2005 年的数据为测试集。对于不同的预测时间尺度,测试了以四天为最佳偏移时间的不同输入组合,结果发现变压器模型的性能优于 LSTM 模型,尤其是在通量值较高的情况下。变压器模型在下一个 1 小时、3 小时、6 小时、12 小时和 1 天预测中的最佳组合是(log10 流量、MLT)、(log10 流量、Bt、AE、SYM-H)、(log10 流量、N)、(log10 流量、N、Dst、Lm)和(log10 流量、Pd、AE),2005 年的 PE 值分别为 0.940、0.886、0.828、0.747 和 0.660。如果剔除≥2 MeV电子通量的低通量异常值,1小时和3小时预测的PE(预测效率)值将分别增加到0.958和0.900。通过评估≥2 MeV电子日通量和小时通量的预测,我们的变压器模型的PE值分别为0.857和0.961,高于以前的模型。此外,我们的模型还可用于填补≥2 MeV电子通量的数据空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信