Droplet 3D cryobioprinting for fabrication of free-standing and volumetric structures

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joshua Weygant, Ali Entezari, Fritz Koch, Ricardo André Galaviz, Carlos Ezio Garciamendez, Pável Hernández, Vanessa Ortiz, David Sebastián Rendon Ruiz, Francisco Aguilar, Andrea Andolfi, Ling Cai, Sushila Maharjan, Anayancy Osorio, Yu Shrike Zhang
{"title":"Droplet 3D cryobioprinting for fabrication of free-standing and volumetric structures","authors":"Joshua Weygant,&nbsp;Ali Entezari,&nbsp;Fritz Koch,&nbsp;Ricardo André Galaviz,&nbsp;Carlos Ezio Garciamendez,&nbsp;Pável Hernández,&nbsp;Vanessa Ortiz,&nbsp;David Sebastián Rendon Ruiz,&nbsp;Francisco Aguilar,&nbsp;Andrea Andolfi,&nbsp;Ling Cai,&nbsp;Sushila Maharjan,&nbsp;Anayancy Osorio,&nbsp;Yu Shrike Zhang","doi":"10.1002/agt2.599","DOIUrl":null,"url":null,"abstract":"<p>Droplet-based bioprinting has shown remarkable potential in tissue engineering and regenerative medicine. However, it requires bioinks with low viscosities, which makes it challenging to create complex 3D structures and spatially pattern them with different materials. This study introduces a novel approach to bioprinting sophisticated volumetric objects by merging droplet-based bioprinting and cryobioprinting techniques. By leveraging the benefits of cryopreservation, we fabricated, for the first time, intricate, self-supporting cell-free or cell-laden structures with single or multiple materials in a simple droplet-based bioprinting process that is facilitated by depositing the droplets onto a cryoplate followed by crosslinking during revival. The feasibility of this approach is demonstrated by bioprinting several cell types, with cell viability increasing to 80%–90% after up to 2 or 3 weeks of culture. Furthermore, the applicational capabilities of this approach are showcased by bioprinting an endothelialized breast cancer model. The results indicate that merging droplet and cryogenic bioprinting complements current droplet-based bioprinting techniques and opens new avenues for the fabrication of volumetric objects with enhanced complexity and functionality, presenting exciting potential for biomedical applications.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Droplet-based bioprinting has shown remarkable potential in tissue engineering and regenerative medicine. However, it requires bioinks with low viscosities, which makes it challenging to create complex 3D structures and spatially pattern them with different materials. This study introduces a novel approach to bioprinting sophisticated volumetric objects by merging droplet-based bioprinting and cryobioprinting techniques. By leveraging the benefits of cryopreservation, we fabricated, for the first time, intricate, self-supporting cell-free or cell-laden structures with single or multiple materials in a simple droplet-based bioprinting process that is facilitated by depositing the droplets onto a cryoplate followed by crosslinking during revival. The feasibility of this approach is demonstrated by bioprinting several cell types, with cell viability increasing to 80%–90% after up to 2 or 3 weeks of culture. Furthermore, the applicational capabilities of this approach are showcased by bioprinting an endothelialized breast cancer model. The results indicate that merging droplet and cryogenic bioprinting complements current droplet-based bioprinting techniques and opens new avenues for the fabrication of volumetric objects with enhanced complexity and functionality, presenting exciting potential for biomedical applications.

Abstract Image

Abstract Image

用于制造独立结构和体积结构的液滴三维低温生物打印技术
基于液滴的生物打印技术在组织工程和再生医学方面显示出了巨大的潜力。然而,它需要低粘度的生物墨水,这使得创建复杂的三维结构并用不同的材料对其进行空间图案化具有挑战性。本研究介绍了一种融合液滴生物打印和低温生物打印技术的新方法,用于生物打印复杂的体积物体。通过利用低温保存的优势,我们首次在基于液滴的简单生物打印过程中用单一或多种材料制造出了复杂的、无细胞或有细胞的自支撑结构。几种细胞类型的生物打印证明了这种方法的可行性,经过长达 2 或 3 周的培养,细胞存活率提高到 80% 至 90%。此外,还通过生物打印内皮化乳腺癌模型展示了这种方法的应用能力。研究结果表明,液滴和低温生物打印技术的融合是对目前基于液滴的生物打印技术的补充,为制造具有更高的复杂性和功能性的体积物体开辟了新的途径,为生物医学应用带来了令人兴奋的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信