Practical guide to building machine learning-based clinical prediction models using imbalanced datasets.

IF 2.1 Q3 CRITICAL CARE MEDICINE
Trauma Surgery & Acute Care Open Pub Date : 2024-06-12 eCollection Date: 2024-01-01 DOI:10.1136/tsaco-2023-001222
Jacklyn Luu, Evgenia Borisenko, Valerie Przekop, Advait Patil, Joseph D Forrester, Jeff Choi
{"title":"Practical guide to building machine learning-based clinical prediction models using imbalanced datasets.","authors":"Jacklyn Luu, Evgenia Borisenko, Valerie Przekop, Advait Patil, Joseph D Forrester, Jeff Choi","doi":"10.1136/tsaco-2023-001222","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical prediction models often aim to predict rare, high-risk events, but building such models requires robust understanding of imbalance datasets and their unique study design considerations. This practical guide highlights foundational prediction model principles for surgeon-data scientists and readers who encounter clinical prediction models, from feature engineering and algorithm selection strategies to model evaluation and design techniques specific to imbalanced datasets. We walk through a clinical example using readable code to highlight important considerations and common pitfalls in developing machine learning-based prediction models. We hope this practical guide facilitates developing and critically appraising robust clinical prediction models for the surgical community.</p>","PeriodicalId":23307,"journal":{"name":"Trauma Surgery & Acute Care Open","volume":"9 1","pages":"e001222"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trauma Surgery & Acute Care Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/tsaco-2023-001222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical prediction models often aim to predict rare, high-risk events, but building such models requires robust understanding of imbalance datasets and their unique study design considerations. This practical guide highlights foundational prediction model principles for surgeon-data scientists and readers who encounter clinical prediction models, from feature engineering and algorithm selection strategies to model evaluation and design techniques specific to imbalanced datasets. We walk through a clinical example using readable code to highlight important considerations and common pitfalls in developing machine learning-based prediction models. We hope this practical guide facilitates developing and critically appraising robust clinical prediction models for the surgical community.

使用不平衡数据集构建基于机器学习的临床预测模型实用指南。
临床预测模型通常旨在预测罕见的高风险事件,但建立此类模型需要对不平衡数据集及其独特的研究设计考虑因素有深入的了解。本实用指南为外科医生和数据科学家以及遇到临床预测模型的读者重点介绍了预测模型的基本原理,从特征工程和算法选择策略到不平衡数据集特有的模型评估和设计技术。我们通过一个临床实例,使用可读代码来强调开发基于机器学习的预测模型时的重要注意事项和常见陷阱。我们希望这本实用指南有助于外科界开发和严格评估稳健的临床预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信