Ka Yung Cheng , Markus Lange-Hegermann , Jan-Bernd Hövener , Björn Schreiweis
{"title":"Instance-level medical image classification for text-based retrieval in a medical data integration center","authors":"Ka Yung Cheng , Markus Lange-Hegermann , Jan-Bernd Hövener , Björn Schreiweis","doi":"10.1016/j.csbj.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>A medical data integration center integrates a large volume of medical images from clinical departments, including X-rays, CT scans, and MRI scans. Ideally, all images should be indexed appropriately with standard clinical terms. However, some images have incorrect or missing annotations, which creates challenges in searching and integrating data centrally. To address this issue, accurate and meaningful descriptors are needed for indexing fields, enabling users to efficiently search for desired images and integrate them with international standards.</p><p>This paper aims to provide concise annotation for missing or incorrectly indexed fields, incorporating essential instance-level information such as radiology modalities (e.g., X-rays), anatomical regions (e.g., chest), and body orientations (e.g., lateral) using a Deep Learning classification model - ResNet50. To demonstrate the capabilities of our algorithm in generating annotations for indexing fields, we conducted three experiments using two open-source datasets, the ROCO dataset, and the IRMA dataset, along with a custom dataset featuring SNOMED CT labels. While the outcomes of these experiments are satisfactory (Precision of >75%) for less critical tasks and serve as a valuable testing ground for image retrieval, they also underscore the need for further exploration of potential challenges. This essay elaborates on the identified issues and presents well-founded recommendations for refining and advancing our proposed approach.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"24 ","pages":"Pages 434-450"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002034/pdfft?md5=bd1fa074436c095e9ca887e9e8641a81&pid=1-s2.0-S2001037024002034-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A medical data integration center integrates a large volume of medical images from clinical departments, including X-rays, CT scans, and MRI scans. Ideally, all images should be indexed appropriately with standard clinical terms. However, some images have incorrect or missing annotations, which creates challenges in searching and integrating data centrally. To address this issue, accurate and meaningful descriptors are needed for indexing fields, enabling users to efficiently search for desired images and integrate them with international standards.
This paper aims to provide concise annotation for missing or incorrectly indexed fields, incorporating essential instance-level information such as radiology modalities (e.g., X-rays), anatomical regions (e.g., chest), and body orientations (e.g., lateral) using a Deep Learning classification model - ResNet50. To demonstrate the capabilities of our algorithm in generating annotations for indexing fields, we conducted three experiments using two open-source datasets, the ROCO dataset, and the IRMA dataset, along with a custom dataset featuring SNOMED CT labels. While the outcomes of these experiments are satisfactory (Precision of >75%) for less critical tasks and serve as a valuable testing ground for image retrieval, they also underscore the need for further exploration of potential challenges. This essay elaborates on the identified issues and presents well-founded recommendations for refining and advancing our proposed approach.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology