Muhammad Ahtisham Raza, Awais Ahmad, Farhan Saeed, Muzzamal Hussain, Muhammad Afzaal, Amara Rasheed
{"title":"Maize bran arabinoxylans mediated green synthesis of silver nanoparticles and their incorporation in gelatin-based packaging film","authors":"Muhammad Ahtisham Raza, Awais Ahmad, Farhan Saeed, Muzzamal Hussain, Muhammad Afzaal, Amara Rasheed","doi":"10.1016/j.fpsl.2024.101301","DOIUrl":null,"url":null,"abstract":"<div><p>Current research was aimed to extract arabinoxylans (AXs) from maize bran and synthesis of silver nanoparticles (AgNPs) through maize bran arabinoxylans (MBAXs), their characterization, and in-vitro efficacy against <em>S. aureus</em>, <em>E.coli</em>, and <em>K. pneumoniae</em>. Then, AgNPs were loaded in gelatin-based biofilm in different concentrations (0 %, 0.5 %, 1 %, and 1.5 %). The results showed that MBAXs contained arabinose (25.83 %), and xylose (32.12 %) in higher proportions. XRD spectra of MBAXs were amorphous, however, AgNPs capped with MBAXs showed crystalline spectra. SEM micrographs showed the spherical and irregular structure of AgNPs. Further, AgNPs showed an inhibition zone in the range of 7.38–13.78 mm, 11.45–19.14 mm, and 7.00–14.66 mm against <em>E. coli</em>, <em>S. aureus</em>, and <em>K. pneumoniae</em> respectively. FTIR spectra of biofilm showed stretchings at 3270, 2935, 1625, 1542, and 1030 cm<sup>−1</sup> which showed the presence of –OH, -CH, and N-H groups of gelatin. An increase in AgNPs concentration, imparted minor changes in SEM micrographs on the film surface. Further, gelatin biofilm showed that the addition of AgNPs didn’t affect the thickness of biofilms but affected the mechanical properties after exceeding 0.5 %. The antimicrobial activity of the biofilm assessed on different foodborne pathogens showed a definite inhibition zone, which showed that packaging films loaded with AgNPs are effective in enhancing the shelf life of food commodities from microbial spoilage. Conclusively, current research showed that MBAXs are suitable for synthesizing AgNPs with definite antimicrobial activity and their incorporation in gelatin biofilm in a concentration-dependent manner could be a sustainable way to the development of sustainable packaging.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"43 ","pages":"Article 101301"},"PeriodicalIF":8.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424000668","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current research was aimed to extract arabinoxylans (AXs) from maize bran and synthesis of silver nanoparticles (AgNPs) through maize bran arabinoxylans (MBAXs), their characterization, and in-vitro efficacy against S. aureus, E.coli, and K. pneumoniae. Then, AgNPs were loaded in gelatin-based biofilm in different concentrations (0 %, 0.5 %, 1 %, and 1.5 %). The results showed that MBAXs contained arabinose (25.83 %), and xylose (32.12 %) in higher proportions. XRD spectra of MBAXs were amorphous, however, AgNPs capped with MBAXs showed crystalline spectra. SEM micrographs showed the spherical and irregular structure of AgNPs. Further, AgNPs showed an inhibition zone in the range of 7.38–13.78 mm, 11.45–19.14 mm, and 7.00–14.66 mm against E. coli, S. aureus, and K. pneumoniae respectively. FTIR spectra of biofilm showed stretchings at 3270, 2935, 1625, 1542, and 1030 cm−1 which showed the presence of –OH, -CH, and N-H groups of gelatin. An increase in AgNPs concentration, imparted minor changes in SEM micrographs on the film surface. Further, gelatin biofilm showed that the addition of AgNPs didn’t affect the thickness of biofilms but affected the mechanical properties after exceeding 0.5 %. The antimicrobial activity of the biofilm assessed on different foodborne pathogens showed a definite inhibition zone, which showed that packaging films loaded with AgNPs are effective in enhancing the shelf life of food commodities from microbial spoilage. Conclusively, current research showed that MBAXs are suitable for synthesizing AgNPs with definite antimicrobial activity and their incorporation in gelatin biofilm in a concentration-dependent manner could be a sustainable way to the development of sustainable packaging.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.