{"title":"LDDG: Long-distance dependent and dual-stream guided feature fusion network for co-saliency object detection","authors":"Longsheng Wei , Siyuan Guo , Jiu Huang , Xuan Fan","doi":"10.1016/j.displa.2024.102767","DOIUrl":null,"url":null,"abstract":"<div><p>Complex image scenes are a challenge in the collaborative saliency object detection task in the field of saliency detection, such as the inability to accurately locate salient object, surrounding background information affecting object recognition, and the inability to fuse multi-layer collaborative features well. To solve these problems, we propose a long-range dependent and dual-stream guided feature fusion network. Firstly, we enhance saliency feature by the proposed coordinate attention module so that the network can learn a better feature representation. Secondly, we capture the long-range dependency information of image feature by the proposed non-local module, to obtain more comprehensive contextual complex information. At lastly, we propose a dual-stream guided network to fuse multiple layers of synergistic saliency features. The dual-stream guided network includes classification streams and mask streams, and the layers in the decoding network are guided to fuse the feature of each layer to output more accurate synoptic saliency prediction map. The experimental results show that our method is superior to the existing methods on three common datasets: CoSal2015, CoSOD3k, and CoCA.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102767"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001318","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Complex image scenes are a challenge in the collaborative saliency object detection task in the field of saliency detection, such as the inability to accurately locate salient object, surrounding background information affecting object recognition, and the inability to fuse multi-layer collaborative features well. To solve these problems, we propose a long-range dependent and dual-stream guided feature fusion network. Firstly, we enhance saliency feature by the proposed coordinate attention module so that the network can learn a better feature representation. Secondly, we capture the long-range dependency information of image feature by the proposed non-local module, to obtain more comprehensive contextual complex information. At lastly, we propose a dual-stream guided network to fuse multiple layers of synergistic saliency features. The dual-stream guided network includes classification streams and mask streams, and the layers in the decoding network are guided to fuse the feature of each layer to output more accurate synoptic saliency prediction map. The experimental results show that our method is superior to the existing methods on three common datasets: CoSal2015, CoSOD3k, and CoCA.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.