Shivitraloshini Sasidharan , Lai-Hock Tey , Sinouvassane Djearamane , Nor Khaizura Mahmud Ab Rashid , Rajeshwari PA , V. Rajendran , Asad Syed , Ling Shing Wong , Vimaleswaran Karani Santhanakrishnan , Vijanth Sagayan Asirvadam , Anto Cordelia Tanislaus Antony Dhanapal
{"title":"Innovative use of chitosan/ZnO NPs bio-nanocomposites for sustainable antimicrobial food packaging of poultry meat","authors":"Shivitraloshini Sasidharan , Lai-Hock Tey , Sinouvassane Djearamane , Nor Khaizura Mahmud Ab Rashid , Rajeshwari PA , V. Rajendran , Asad Syed , Ling Shing Wong , Vimaleswaran Karani Santhanakrishnan , Vijanth Sagayan Asirvadam , Anto Cordelia Tanislaus Antony Dhanapal","doi":"10.1016/j.fpsl.2024.101298","DOIUrl":null,"url":null,"abstract":"<div><p>A novel nanocomposite was developed by integrating zinc oxide nanoparticles (ZnO NPs) into chitosan (CS) matrix and investigated for its impact on the quality and shelf life of refrigerated poultry meat over 11 days. Physicochemical properties including weight, pH, titratable acidity, color, thiobarbituric acid reactive substances assay, microbiological growth studies encompassed total psychotropic and mesophilic aerobic microorganisms, <em>Enterobacteriaceae</em> analyses, and zinc migration levels were conducted to determine the optimal nanocomposite concentration. Results revealed that bio-nanocomposite exhibited superior characteristics compared to chemogenic nanocomposite, chitosan, polyvinyl alcohol, and unwrapped meats. Bio-nanocomposite with reduced unsaturated lipid content extends poultry shelf life to 7 days in packaging, outperforming chemogenic-nanocomposites (5 days) and chitosan (4 days). This study proves that CS/ZnO NP nanocomposite is a promising active packaging material for meat, extending their shelf life without deteriorating its physicochemical characteristics and supporting sustainability, though further research on its toxicological properties is warranted.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"43 ","pages":"Article 101298"},"PeriodicalIF":8.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214289424000632/pdfft?md5=cec2c13de6b07934bbdac928840281fa&pid=1-s2.0-S2214289424000632-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424000632","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel nanocomposite was developed by integrating zinc oxide nanoparticles (ZnO NPs) into chitosan (CS) matrix and investigated for its impact on the quality and shelf life of refrigerated poultry meat over 11 days. Physicochemical properties including weight, pH, titratable acidity, color, thiobarbituric acid reactive substances assay, microbiological growth studies encompassed total psychotropic and mesophilic aerobic microorganisms, Enterobacteriaceae analyses, and zinc migration levels were conducted to determine the optimal nanocomposite concentration. Results revealed that bio-nanocomposite exhibited superior characteristics compared to chemogenic nanocomposite, chitosan, polyvinyl alcohol, and unwrapped meats. Bio-nanocomposite with reduced unsaturated lipid content extends poultry shelf life to 7 days in packaging, outperforming chemogenic-nanocomposites (5 days) and chitosan (4 days). This study proves that CS/ZnO NP nanocomposite is a promising active packaging material for meat, extending their shelf life without deteriorating its physicochemical characteristics and supporting sustainability, though further research on its toxicological properties is warranted.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.