Machine Learning Techniques for Land Use/Land Cover Classification of Medium Resolution Optical Satellite Imagery Focusing on Temporary Inundated Areas

Boudewijn van Leeuwen, Zalán Tobak, F. Kovács
{"title":"Machine Learning Techniques for Land Use/Land Cover Classification of Medium Resolution Optical Satellite Imagery Focusing on Temporary Inundated Areas","authors":"Boudewijn van Leeuwen, Zalán Tobak, F. Kovács","doi":"10.2478/jengeo-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract Classification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.","PeriodicalId":115431,"journal":{"name":"Journal of Environmental Geography","volume":" 1007","pages":"43 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Geography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jengeo-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Classification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.
以临时淹没区为重点的中分辨率光学卫星图像的土地利用/土地覆盖分类机器学习技术
摘要 利用机器学习技术对多光谱光学卫星数据进行分类,以得出土地利用/土地覆被专题数据,这对许多应用都很重要。通过比较最新算法,我们的研究旨在确定土地利用/土地覆被分类的最佳方案,特别关注匈牙利南部平坦地区的临时淹没土地。这些洪水扰乱了农业生产,并可能造成巨大的经济损失。使用随机森林、支持向量机和人工神经网络的开源实现对具有高时间分辨率和中等空间分辨率的哨兵 2 号数据进行分类。每个分类模型都应用于相同的数据集,并对结果进行定性和定量比较。所有方法的结果准确率都很高,总体差异不大。空间定量比较表明,神经网络的结果最好,但所有模型都受到图像中大气扰动的强烈影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信