{"title":"Development of an organophosphate and carbamate pesticide test kit by using a magnetic particle coated with esterase enzyme from honey bee heads","authors":"Udomsap Jaitham, Sawaeng Kawichai, Sumed Yadoung, Phannika Tongchai, Peerapong Jeeno, Pichamon Yana, Bajaree Chuttong, Khanchai Danmek, Surat Hongsibsong","doi":"10.1186/s40538-024-00595-9","DOIUrl":null,"url":null,"abstract":"<div><p>Organophosphates (OPs) and carbamates (CMs) play a vital role in Thai agriculture, public health, and pest control. However, their detection presents challenges due to expensive methods requiring specialized expertise. Addressing this gap, our study introduces an innovative, cost-effective method for detecting OPs and CMs in Thailand. We utilized the test kit by using magnetic particles coated with esterase enzymes from honey bee heads combined with a colorimetric approach. The developed test kit shows low limits of detection (LODs) at 0.001 mg/L of dichlorvos (OPs) and 0.004 mg/L for carbaryl (CMs). The efficiency of the developed test kits in comparison with the standard technique of gas chromatography with flame photometry detection (GC-FPD) shows a comparable result in fruit and vegetable residue analysis. This developed test kit proposes a cost-effective OPs and CMs analysis test kit for Thailand, promising expense reduction and simplified verification processes. Its applicability to fruits and vegetables signifies practicality in agriculture, marking a significant advancement in accessible and efficient pesticide residue monitoring. Despite challenges in pesticide use, our method holds promise for improving safety and efficiency in Thai pesticide management.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00595-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00595-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphates (OPs) and carbamates (CMs) play a vital role in Thai agriculture, public health, and pest control. However, their detection presents challenges due to expensive methods requiring specialized expertise. Addressing this gap, our study introduces an innovative, cost-effective method for detecting OPs and CMs in Thailand. We utilized the test kit by using magnetic particles coated with esterase enzymes from honey bee heads combined with a colorimetric approach. The developed test kit shows low limits of detection (LODs) at 0.001 mg/L of dichlorvos (OPs) and 0.004 mg/L for carbaryl (CMs). The efficiency of the developed test kits in comparison with the standard technique of gas chromatography with flame photometry detection (GC-FPD) shows a comparable result in fruit and vegetable residue analysis. This developed test kit proposes a cost-effective OPs and CMs analysis test kit for Thailand, promising expense reduction and simplified verification processes. Its applicability to fruits and vegetables signifies practicality in agriculture, marking a significant advancement in accessible and efficient pesticide residue monitoring. Despite challenges in pesticide use, our method holds promise for improving safety and efficiency in Thai pesticide management.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.