Xueyan Jiang, Yaodong Ping, Yuan Chen, Benben Zhu, Rong Fu, Yiwei Hao, Lei Fan
{"title":"A study on construction of a prognosis model for liver cancer based on analgesic targets and screening therapeutic drugs.","authors":"Xueyan Jiang, Yaodong Ping, Yuan Chen, Benben Zhu, Rong Fu, Yiwei Hao, Lei Fan","doi":"10.1007/s13258-024-01515-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liver cancer is one of the most malignant liver diseases in the world, and the 5-year survival rate of such patients is low. Analgesics are often used to cure pain prevalent in liver cancer. The expression changes and clinical significance of the analgesic targets (ATs) in liver cancer have not been deeply understood.</p><p><strong>Objective: </strong>The purpose of this study is to clarify the expression pattern of ATs gene in liver cancer and its clinical significance. Through the comprehensive analysis of transcriptome data and clinical parameters, the prognosis model related to ATs gene is established, and the drug information sensitive to ATs is mined.</p><p><strong>Methods: </strong>The study primarily utilized transcriptomic data and clinical information from liver cancer patients sourced from The Cancer Genome Atlas (TCGA) database. These data were employed to analyze the expression of ATs, conduct survival analysis, gene set variation analysis (GSVA), immune cell infiltration analysis, establish a prognostic model, and perform other bioinformatic analyses. Additionally, data from liver cancer patients in the International Cancer Genome Consortium (ICGC) were utilized to validate the accuracy of the model. Furthermore, the impact of analgesics on key genes in the prognostic model was assessed using data from the Comparative Toxicogenomics Database (CTD).</p><p><strong>Results: </strong>The study investigated the differential expression of 58 ATs genes in liver cancer compared to normal tissues. Patients were stratified based on ATs expression, revealing varied survival outcomes. Functional enrichment analysis highlighted distinctions in spindle organization, centrosome, and spindle microtubule functions. Prognostic modeling identified low TP53 expression as protective, while elevated CCNA2, NEU1, and HTR2C levels posed risks. Commonly used analgesics, including acetaminophen and others, were found to influence the expression of these genes. These findings provide insights into potential therapeutic strategies for liver cancer and shed light on the molecular mechanisms underlying its progression.</p><p><strong>Conclusions: </strong>The collective analysis of gene signatures associated with ATs suggests their potential as prognostic predictors in hepatocellular carcinoma patients. These findings not only offer insights into cancer therapy but also provide novel avenues for the development of indications for analgesics.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"831-850"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01515-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Liver cancer is one of the most malignant liver diseases in the world, and the 5-year survival rate of such patients is low. Analgesics are often used to cure pain prevalent in liver cancer. The expression changes and clinical significance of the analgesic targets (ATs) in liver cancer have not been deeply understood.
Objective: The purpose of this study is to clarify the expression pattern of ATs gene in liver cancer and its clinical significance. Through the comprehensive analysis of transcriptome data and clinical parameters, the prognosis model related to ATs gene is established, and the drug information sensitive to ATs is mined.
Methods: The study primarily utilized transcriptomic data and clinical information from liver cancer patients sourced from The Cancer Genome Atlas (TCGA) database. These data were employed to analyze the expression of ATs, conduct survival analysis, gene set variation analysis (GSVA), immune cell infiltration analysis, establish a prognostic model, and perform other bioinformatic analyses. Additionally, data from liver cancer patients in the International Cancer Genome Consortium (ICGC) were utilized to validate the accuracy of the model. Furthermore, the impact of analgesics on key genes in the prognostic model was assessed using data from the Comparative Toxicogenomics Database (CTD).
Results: The study investigated the differential expression of 58 ATs genes in liver cancer compared to normal tissues. Patients were stratified based on ATs expression, revealing varied survival outcomes. Functional enrichment analysis highlighted distinctions in spindle organization, centrosome, and spindle microtubule functions. Prognostic modeling identified low TP53 expression as protective, while elevated CCNA2, NEU1, and HTR2C levels posed risks. Commonly used analgesics, including acetaminophen and others, were found to influence the expression of these genes. These findings provide insights into potential therapeutic strategies for liver cancer and shed light on the molecular mechanisms underlying its progression.
Conclusions: The collective analysis of gene signatures associated with ATs suggests their potential as prognostic predictors in hepatocellular carcinoma patients. These findings not only offer insights into cancer therapy but also provide novel avenues for the development of indications for analgesics.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.