Optimizing Real-Time Object Detection- A Comparison of YOLO Models

Pravek Sharma, Dr. Rajesh Kumar Tyagi, Dr. Priyanka Dubey
{"title":"Optimizing Real-Time Object Detection- A Comparison of YOLO Models","authors":"Pravek Sharma, Dr. Rajesh Kumar Tyagi, Dr. Priyanka Dubey","doi":"10.55524/ijircst.2024.12.3.11","DOIUrl":null,"url":null,"abstract":"Gun and weapon détection plays a crucial role in security, surveillance, and law enforcement. This study conducts a comprehensive comparison of all available YOLO (You Only Look Once) models for their effectiveness in weapon detection. We train YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 on a custom dataset of 16,000 images containing guns, knives, and heavy weapons. Each model is evaluated on a validation set of 1,400 images, with mAP (mean average precision) as the primary performance metric. This extensive comparative analysis identifies the best performing YOLO variant for gun and weapon detection, providing valuable insights into the strengths and weaknesses of each model for this specific task.","PeriodicalId":502773,"journal":{"name":"International Journal of Innovative Research in Computer Science and Technology","volume":"249 4‐6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55524/ijircst.2024.12.3.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gun and weapon détection plays a crucial role in security, surveillance, and law enforcement. This study conducts a comprehensive comparison of all available YOLO (You Only Look Once) models for their effectiveness in weapon detection. We train YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 on a custom dataset of 16,000 images containing guns, knives, and heavy weapons. Each model is evaluated on a validation set of 1,400 images, with mAP (mean average precision) as the primary performance metric. This extensive comparative analysis identifies the best performing YOLO variant for gun and weapon detection, providing valuable insights into the strengths and weaknesses of each model for this specific task.
优化实时物体检测--YOLO 模型比较
枪支和武器检测在安全、监控和执法中发挥着至关重要的作用。本研究全面比较了所有可用的 YOLO(只看一次)模型在武器检测方面的有效性。我们在包含枪支、刀具和重型武器的 16,000 张图像的自定义数据集上训练 YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7 和 YOLOv8。每个模型都在由 1,400 张图像组成的验证集上进行评估,以 mAP(平均精度)作为主要性能指标。这项广泛的比较分析确定了在枪支和武器检测方面性能最佳的 YOLO 变体,为了解每个模型在这一特定任务中的优缺点提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信