{"title":"Aptamer-based electrochemical nanobiosensor for research and monitoring of multiple sclerosis in mice models","authors":"Marina Serin , Pınar Kara","doi":"10.1016/j.bioelechem.2024.108744","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple sclerosis (MS) is a severe progressive autoimmune-inflammatory, demyelinating process in the central nervous system (CNS) with heterogeneous neurological symptoms appearing as a consequence of myelin break down. Myelin basic protein (MBP) makes up to 30 % of the CNS myelin <span>[1]</span> and it is known to be released into the cerebrospinal fluid (CSF) as a bioindicator of MS. Autoimmune encephalomyelitis (EAE) is a mice model of MS widely used for research and development of new treatments <span>[2]</span>. Herein, MBP specific aptamer developed for possible therapeutic purposes in mouse model <span>[3]</span> was applied as a bioreceptor for MBP recognition. A nanobiosensor for MBP detection and monitoring was developed by using graphene oxide (GO) nanoparticles integrated onto the screen-printed carbon electrodes (SPCE) and aptamer immobilized to create a bioactive layer on the sensor surface for MBP binding. The measurements were carried out using electrochemical impedance spectrometry (EIS). Validation studies were carried out in a biological matrix (artificial CSF) containing MBP, and MSA. The aptasensor had LOD in artificial CSF 0.01 ng/mL and showed its usability in the concentration range of 0.01 … 64 ng/mL.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108744"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001063","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is a severe progressive autoimmune-inflammatory, demyelinating process in the central nervous system (CNS) with heterogeneous neurological symptoms appearing as a consequence of myelin break down. Myelin basic protein (MBP) makes up to 30 % of the CNS myelin [1] and it is known to be released into the cerebrospinal fluid (CSF) as a bioindicator of MS. Autoimmune encephalomyelitis (EAE) is a mice model of MS widely used for research and development of new treatments [2]. Herein, MBP specific aptamer developed for possible therapeutic purposes in mouse model [3] was applied as a bioreceptor for MBP recognition. A nanobiosensor for MBP detection and monitoring was developed by using graphene oxide (GO) nanoparticles integrated onto the screen-printed carbon electrodes (SPCE) and aptamer immobilized to create a bioactive layer on the sensor surface for MBP binding. The measurements were carried out using electrochemical impedance spectrometry (EIS). Validation studies were carried out in a biological matrix (artificial CSF) containing MBP, and MSA. The aptasensor had LOD in artificial CSF 0.01 ng/mL and showed its usability in the concentration range of 0.01 … 64 ng/mL.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.