Ahuva Grubstein, Tal Friehmann, Marva Dahan, Chen Abitbol, Ithai Gadiel, Dario M Schejtman, Tzippy Shochat, Eli Atar, Shlomit Tamir
{"title":"Digital Breast Tomosynthesis for Upgraded BIRADS Scoring towards the True Pathology of Lesions Detected by Contrast-Enhanced Mammography.","authors":"Ahuva Grubstein, Tal Friehmann, Marva Dahan, Chen Abitbol, Ithai Gadiel, Dario M Schejtman, Tzippy Shochat, Eli Atar, Shlomit Tamir","doi":"10.3390/tomography10050061","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To determine the added value of digital breast tomosynthesis (DBT) in the assessment of lesions detected by contrast-enhanced mammography (CEM).</p><p><strong>Material and methods: </strong>A retrospective study was conducted in a tertiary university medical center. All CEM studies including DBT performed between January 2016 and December 2020 were included. Lesions were categorized and scored by four dedicated breast radiologists according to the recent CEM and DBT supplements to the Breast Imaging Reporting and Data System (BIRADS) lexicon. Changes in the BIRADS score of CEM-detected lesions with the addition of DBT were evaluated according to the pathology results and 1-year follow-up imaging study.</p><p><strong>Results: </strong>BIRADS scores of CEM-detected lesions were upgraded toward the lesion's pathology with the addition of DBT (<i>p</i> > 0.0001), overall and for each reader. The difference in BIRADS scores before and after the addition of DBT was more significant for readers who were less experienced. The reason for changes in the BIRADS score was better lesion margin visibility. The main BIRADS descriptors applied in the malignant lesions were spiculations, calcifications, architectural distortion, and sharp or obscured margins.</p><p><strong>Conclusions: </strong>The addition of DBT to CEM provides valuable information on the enhancing lesion, leading to a more accurate BIRADS score.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"10 5","pages":"806-815"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10050061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To determine the added value of digital breast tomosynthesis (DBT) in the assessment of lesions detected by contrast-enhanced mammography (CEM).
Material and methods: A retrospective study was conducted in a tertiary university medical center. All CEM studies including DBT performed between January 2016 and December 2020 were included. Lesions were categorized and scored by four dedicated breast radiologists according to the recent CEM and DBT supplements to the Breast Imaging Reporting and Data System (BIRADS) lexicon. Changes in the BIRADS score of CEM-detected lesions with the addition of DBT were evaluated according to the pathology results and 1-year follow-up imaging study.
Results: BIRADS scores of CEM-detected lesions were upgraded toward the lesion's pathology with the addition of DBT (p > 0.0001), overall and for each reader. The difference in BIRADS scores before and after the addition of DBT was more significant for readers who were less experienced. The reason for changes in the BIRADS score was better lesion margin visibility. The main BIRADS descriptors applied in the malignant lesions were spiculations, calcifications, architectural distortion, and sharp or obscured margins.
Conclusions: The addition of DBT to CEM provides valuable information on the enhancing lesion, leading to a more accurate BIRADS score.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.