Melanie Dannemeyer, Anna Berling, Sara Kanje, Henric Enstedt, LanLan Xu, Delaram Afshari, Malin Westin, Gabriella Hober, Mathias Uhlén, Sophia Hober, Hanna Tegel
{"title":"Fast and robust recombinant protein production utilizing episomal stable pools in WAVE bioreactors","authors":"Melanie Dannemeyer, Anna Berling, Sara Kanje, Henric Enstedt, LanLan Xu, Delaram Afshari, Malin Westin, Gabriella Hober, Mathias Uhlén, Sophia Hober, Hanna Tegel","doi":"10.1016/j.pep.2024.106505","DOIUrl":null,"url":null,"abstract":"<div><p>Protein reagents are essential resources for several stages of drug discovery projects from structural biology and assay development through lead optimization. Depending on the aim of the project different amounts of pure protein are required. Small-scale expressions are initially used to determine the reachable levels of production and quality before scaling up protein reagent supply. Commonly, amounts of several hundreds of milligrams to grams are needed for different experiments, including structural investigations and activity evaluations, which require rather large cultivation volumes. This implies that cultivation of large volumes of either transiently transfected cells or stable pools/stable cell lines is needed. Hence, a production process that is scalable, speeds up the development projects, and increases the robustness of protein reagent quality throughout scales. Here we present a protein production pipeline with high scalability. We show that our protocols for protein production in Chinese hamster ovary cells allow for a seamless and efficient scale-up with robust product quality and high performance. The flexible scale of the production process, as shown here, allows for shorter lead times in drug discovery projects where there is a reagent demand for a specific protein or a set of target proteins.</p></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"221 ","pages":"Article 106505"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1046592824000779/pdfft?md5=9c8b668160a3752d0db74721d52fe3ff&pid=1-s2.0-S1046592824000779-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592824000779","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Protein reagents are essential resources for several stages of drug discovery projects from structural biology and assay development through lead optimization. Depending on the aim of the project different amounts of pure protein are required. Small-scale expressions are initially used to determine the reachable levels of production and quality before scaling up protein reagent supply. Commonly, amounts of several hundreds of milligrams to grams are needed for different experiments, including structural investigations and activity evaluations, which require rather large cultivation volumes. This implies that cultivation of large volumes of either transiently transfected cells or stable pools/stable cell lines is needed. Hence, a production process that is scalable, speeds up the development projects, and increases the robustness of protein reagent quality throughout scales. Here we present a protein production pipeline with high scalability. We show that our protocols for protein production in Chinese hamster ovary cells allow for a seamless and efficient scale-up with robust product quality and high performance. The flexible scale of the production process, as shown here, allows for shorter lead times in drug discovery projects where there is a reagent demand for a specific protein or a set of target proteins.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.