Structural optimization of serpentine channel water-cooled plate for lithium-ion battery modules based on multi-objective Bayesian optimization algorithm

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Qinmeng Jiang , Yanhui Zhang , Yi Liu , Rui Xu , Jianjun Zhu , Jianli Wang
{"title":"Structural optimization of serpentine channel water-cooled plate for lithium-ion battery modules based on multi-objective Bayesian optimization algorithm","authors":"Qinmeng Jiang ,&nbsp;Yanhui Zhang ,&nbsp;Yi Liu ,&nbsp;Rui Xu ,&nbsp;Jianjun Zhu ,&nbsp;Jianli Wang","doi":"10.1016/j.est.2024.112136","DOIUrl":null,"url":null,"abstract":"<div><p>Maintaining the battery within its optimal operating temperature range while preventing thermal runaway is crucial. Serpentine channel water-cooled plate (SCWCP) has been widely employed in battery pack cooling. The challenge lies in enhancing the cooling efficiency of SCWCP while minimizing energy consumption. Due to the high efficiency and robustness of the multi-objective Bayesian optimization (MOBO), it is employed to systematically optimize the SCWCP for lithium batteries. The width, depth, and turning radius of the serpentine flow channels are optimized to minimize both the maximum battery module temperature (<em>T</em><sub><em>max</em></sub>) and the pumping power (<em>PP</em>) of the SCWCP. The MOBO process integrates structural parameter adjustments into Computational Fluid Dynamics (CFD) simulations through an automated iterative approach. Subsequently, a Pareto front is generated based on <em>T</em><sub><em>max</em></sub> and <em>PP</em>, and the K-means clustering algorithm identifies four design solutions with different performance orientations. Compared with the initial design, <em>T</em><sub><em>max</em></sub> of the optimal design decreases slightly, but with a reduction in <em>PP</em> of 71 %. Compared to other evolutionary algorithms, the MOBO algorithm exhibits superior computational efficiency in providing an optimal design solution set at a lower computational cost.</p></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"91 ","pages":"Article 112136"},"PeriodicalIF":8.9000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24017225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining the battery within its optimal operating temperature range while preventing thermal runaway is crucial. Serpentine channel water-cooled plate (SCWCP) has been widely employed in battery pack cooling. The challenge lies in enhancing the cooling efficiency of SCWCP while minimizing energy consumption. Due to the high efficiency and robustness of the multi-objective Bayesian optimization (MOBO), it is employed to systematically optimize the SCWCP for lithium batteries. The width, depth, and turning radius of the serpentine flow channels are optimized to minimize both the maximum battery module temperature (Tmax) and the pumping power (PP) of the SCWCP. The MOBO process integrates structural parameter adjustments into Computational Fluid Dynamics (CFD) simulations through an automated iterative approach. Subsequently, a Pareto front is generated based on Tmax and PP, and the K-means clustering algorithm identifies four design solutions with different performance orientations. Compared with the initial design, Tmax of the optimal design decreases slightly, but with a reduction in PP of 71 %. Compared to other evolutionary algorithms, the MOBO algorithm exhibits superior computational efficiency in providing an optimal design solution set at a lower computational cost.

Abstract Image

基于多目标贝叶斯优化算法的锂离子电池模块蛇形槽水冷板结构优化
将电池保持在最佳工作温度范围内,同时防止热失控至关重要。蛇形通道水冷板(SCWCP)已被广泛用于电池组冷却。如何提高蛇形通道水冷板的冷却效率,同时最大限度地降低能耗,是一项挑战。由于多目标贝叶斯优化法(MOBO)的高效性和鲁棒性,我们采用该方法对锂电池的蛇形通道水冷板进行了系统优化。通过优化蛇形流道的宽度、深度和转弯半径,使 SCWCP 的电池模块最高温度(Tmax)和泵送功率(PP)最小。MOBO 流程通过自动迭代方法将结构参数调整集成到计算流体动力学 (CFD) 模拟中。随后,根据 Tmax 和 PP 生成帕累托前沿,并通过 K-means 聚类算法识别出四种具有不同性能取向的设计方案。与初始设计相比,最优设计的 Tmax 略有降低,但 PP 降低了 71%。与其他进化算法相比,MOBO 算法的计算效率更高,能以更低的计算成本提供最佳设计方案集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信