{"title":"f(T) gravity after DESI Baryon acoustic oscillation and DES supernovae 2024 data","authors":"Celia Escamilla-Rivera, Rodrigo Sandoval-Orozco","doi":"10.1016/j.jheap.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate new constraints on <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> gravity using the recent Baryon Acoustic Oscillation (BAO) data released by the Dark Energy Spectroscopic Instrument (DESI) and the Type Ia supernovae (SNIa) catalog from the full 5-years of the Dark Energy Survey Supernova Program (DES-SN5YR). The <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> cosmological models considered are characterised by power law late-time accelerated expansion. Our results show that the combination DESI BAO +<span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> CMB Planck suggests a Bayesian preference for late-time <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> cosmological models over ΛCDM, obtaining a value of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msubsup><mrow><mn>68.3</mn></mrow><mrow><mo>−</mo><mn>3.5</mn></mrow><mrow><mo>+</mo><mn>3.0</mn></mrow></msubsup></math></span> [km/s/Mpc] in agreement with SH0ES collaboration, <strong>however, due to a bigger uncertainty</strong>.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"42 ","pages":"Pages 217-221"},"PeriodicalIF":10.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000351","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate new constraints on gravity using the recent Baryon Acoustic Oscillation (BAO) data released by the Dark Energy Spectroscopic Instrument (DESI) and the Type Ia supernovae (SNIa) catalog from the full 5-years of the Dark Energy Survey Supernova Program (DES-SN5YR). The cosmological models considered are characterised by power law late-time accelerated expansion. Our results show that the combination DESI BAO + CMB Planck suggests a Bayesian preference for late-time cosmological models over ΛCDM, obtaining a value of [km/s/Mpc] in agreement with SH0ES collaboration, however, due to a bigger uncertainty.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.