Generating hyperspectral reference measurements for surface reflectance from the LANDHYPERNET and WATERHYPERNET networks

Pieter De Vis, C. Goyens, Samuel Hunt, Q. Vanhellemont, Kevin Ruddick, Agnieszka Bialek
{"title":"Generating hyperspectral reference measurements for surface reflectance from the LANDHYPERNET and WATERHYPERNET networks","authors":"Pieter De Vis, C. Goyens, Samuel Hunt, Q. Vanhellemont, Kevin Ruddick, Agnieszka Bialek","doi":"10.3389/frsen.2024.1347230","DOIUrl":null,"url":null,"abstract":"The LANDHYPERNET and WATERHYPERNET networks (which together make up the HYPERNETS network) consist of a set of autonomous hyperspectral spectroradiometers (HYPSTAR®) acquiring fiducial reference measurements of surface reflectance at various sites covering a wide range of surface types (both land and water) for use in satellite Earth observation validation and remote sensing applications. This paper describes the processing algorithm for the HYPSTAR® data products. The hypernets_processor is a Python software package to process the LANDHYPERNET and WATERHYPERNET in-situ hyperspectral raw data, collected from the measurement network under the standard measurement protocols, to the designated products, through data transmission and conversion, application of calibration, evaluation of reflectance and other variables, and, archiving for distribution to users. In order to achieve fiducial reference measurement quality, uncertainties are propagated through each step of the processing chain, taking into account temporal and spectral error-covariance. Such detailed uncertainty information is unique for any satellite validation network. We also describe the HYPSTAR® products acquired until 2023–04–31, consisting of 12,190 LANDHYPERNET sequences and 55,514 WATERHYPERNET sequences (of which respectively 11,802 and 44,412 were successfully processed to surface reflectance).","PeriodicalId":502669,"journal":{"name":"Frontiers in Remote Sensing","volume":"35 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2024.1347230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The LANDHYPERNET and WATERHYPERNET networks (which together make up the HYPERNETS network) consist of a set of autonomous hyperspectral spectroradiometers (HYPSTAR®) acquiring fiducial reference measurements of surface reflectance at various sites covering a wide range of surface types (both land and water) for use in satellite Earth observation validation and remote sensing applications. This paper describes the processing algorithm for the HYPSTAR® data products. The hypernets_processor is a Python software package to process the LANDHYPERNET and WATERHYPERNET in-situ hyperspectral raw data, collected from the measurement network under the standard measurement protocols, to the designated products, through data transmission and conversion, application of calibration, evaluation of reflectance and other variables, and, archiving for distribution to users. In order to achieve fiducial reference measurement quality, uncertainties are propagated through each step of the processing chain, taking into account temporal and spectral error-covariance. Such detailed uncertainty information is unique for any satellite validation network. We also describe the HYPSTAR® products acquired until 2023–04–31, consisting of 12,190 LANDHYPERNET sequences and 55,514 WATERHYPERNET sequences (of which respectively 11,802 and 44,412 were successfully processed to surface reflectance).
从 LANDHYPERNET 和 WATERHYPERNET 网络生成地表反射率的高光谱参考测量值
LANDHYPERNET 和 WATERHYPERNET 网络(共同组成 HYPERNETS 网络)由一组自主高光谱分光辐射计(HYPSTAR®)组成,它们在不同地点采集地表反射率的基准参考测量数据,覆盖了广泛的地表类型(包括陆地和水面),用于卫星地球观测验证和遥感应用。本文介绍了 HYPSTAR® 数据产品的处理算法。hypernets_processor 是一个 Python 软件包,通过数据传输和转换、应用校准、评估反射率和其他变量,将根据标准测量协议从测量网络收集的 LANDHYPERNET 和 WATERHYPERNET 现场高光谱原始数据加工成指定产品,并存档以分发给用户。为了达到可靠的参考测量质量,不确定性将通过处理链的每一步传播,同时考虑到时间和光谱误差协方差。如此详细的不确定性信息对于任何卫星验证网络来说都是独一无二的。我们还介绍了截至 2023-04-31 获取的 HYPSTAR® 产品,包括 12,190 个陆地和水文序列以及 55,514 个水文序列(其中分别有 11,802 和 44,412 个成功处理为地表反射率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信