Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bo-Sen Wu , Mahnaz Mansoori , Michael Schwalb , Sadman Islam , Most Tahera Naznin , Philip Wiredu Addo , Sarah MacPherson , Valérie Orsat , Mark Lefsrud
{"title":"Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters","authors":"Bo-Sen Wu ,&nbsp;Mahnaz Mansoori ,&nbsp;Michael Schwalb ,&nbsp;Sadman Islam ,&nbsp;Most Tahera Naznin ,&nbsp;Philip Wiredu Addo ,&nbsp;Sarah MacPherson ,&nbsp;Valérie Orsat ,&nbsp;Mark Lefsrud","doi":"10.1016/j.jphotobiol.2024.112939","DOIUrl":null,"url":null,"abstract":"<div><p>The visible light spectrum (400–700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590–620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420–430 nm and 590–620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"256 ","pages":"Article 112939"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101113442400099X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The visible light spectrum (400–700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590–620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420–430 nm and 590–620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.

发光二极管红光、蓝光和琥珀光对光合作用和植物生长参数的影响。
可见光光谱(400-700 纳米)为植物光合作用和其他无数生物过程提供动力。先驱光生物学家绘制的光合作用曲线显示,琥珀色光(590-620 纳米)在该光谱中的光合速率最高。然而,人们认为红光和蓝光对植物生长的影响更胜一筹。在此,我们报告了利用发光二极管(LED)量化光波长如何影响光合作用和植物生长的两种方法。番茄和莴苣植物的分辨量子产率光谱与之前获得的光谱相似,显示出 420-430 纳米和 590-620 纳米区域的高量子利用效率。在蓝光(445 纳米)、琥珀光(595 纳米)、红光(635 纳米)和红-蓝-琥珀混合光下生长 14 天的番茄植株显示,琥珀光的鲜重和干重都较高,至少高出 20%。主成分分析表明,琥珀光对鲜重的影响更明显、更直接,而红光对干重的影响较大。这些数据阐明了琥珀色光在光合作用中的主要作用,并表明带宽决定了植物在单一琥珀色光照下的生长和产量。研究结果为今后旨在最大限度提高植物生产力的工作开创了先河,对可控环境农业具有广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信