moPepGen: Rapid and Comprehensive Identification of Non-canonical Peptides.

Chenghao Zhu, Lydia Y Liu, Annie Ha, Takafumi N Yamaguchi, Helen Zhu, Rupert Hugh-White, Julie Livingstone, Yash Patel, Thomas Kislinger, Paul C Boutros
{"title":"moPepGen: Rapid and Comprehensive Identification of Non-canonical Peptides.","authors":"Chenghao Zhu, Lydia Y Liu, Annie Ha, Takafumi N Yamaguchi, Helen Zhu, Rupert Hugh-White, Julie Livingstone, Yash Patel, Thomas Kislinger, Paul C Boutros","doi":"10.1101/2024.03.28.587261","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteomic diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively generates non-canonical peptides in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it enumerates previously unobservable noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient detection and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.03.28.587261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteomic diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively generates non-canonical peptides in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it enumerates previously unobservable noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient detection and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.

moPepGen:快速、全面的蛋白质形式鉴定。
基因表达是生物信息从储存形式(DNA)到功能形式(蛋白质和某些 RNA)的多步骤转化。在这一转化过程中,每一步的调控活动都会将单个基因倍增为无数种蛋白形式。蛋白基因组学研究的是基因组和转录组的变异如何产生这种蛋白形式的多样性,它受到基因表达复杂性建模挑战的限制。因此,我们创建了moPepGen,这是一种基于图的算法,能在线性时间内全面枚举蛋白形式。moPepGen可与多种技术结合使用,适用于多个物种以及所有类型的基因和转录组数据。在人类癌症蛋白质组中,它能检测和量化因种系和体细胞基因组变异、非编码开放阅读框、RNA融合和RNA环化而产生的以前未观察到的非典型多肽。moPepGen 能在现有的和新的蛋白质组数据中有效地识别和定量以前隐藏的蛋白质,从而为所有蛋白质组学应用提供便利。请访问:https://github.com/uclahs-cds/package-moPepGen。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信