A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway.

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2024-12-01 Epub Date: 2024-05-04 DOI:10.1007/s12035-024-04204-6
Naif H Ali, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Saud A Alnaaim, Helal F Hetta, Hebatallah M Saad, Gaber El-Saber Batiha
{"title":"A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway.","authors":"Naif H Ali, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Saud A Alnaaim, Helal F Hetta, Hebatallah M Saad, Gaber El-Saber Batiha","doi":"10.1007/s12035-024-04204-6","DOIUrl":null,"url":null,"abstract":"<p><p>Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"10198-10215"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04204-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.

Abstract Image

癫痫与α-突触核蛋白之间的相互联系:谜一样的途径
α-突触核蛋白(α-Syn)是一种特异性神经元蛋白,可调节神经递质的释放和突触小泡的贩运。外泌体相关的α-Syn是中枢神经系统(CNS)的特异性蛋白,与癫痫的发病机制有关。因此,本综述旨在阐明α-Syn与癫痫之间可能存在的联系,以及α-Syn如何影响癫痫的病理生理学。α-Syn这种神经退行性蛋白与癫痫的发病机制有关。临床前研究和临床研究的证据表明,α-Syn 的上调会通过诱导氧化应激、神经炎症和抑制自噬形成恶性循环,诱发渐进性神经元功能障碍,进而发展成严重的癫痫。此外,α-Syn在癫痫中的积累可能继发于不同的细胞改变,包括氧化应激、神经炎症、脑源性神经营养因子(BDNF)和前花生蛋白(PGN)的减少以及自噬途径的失败。然而,α-Syn诱导癫痫发生的机制尚未得到很好的阐明。因此,α-Syn 可能是癫痫的继发性后果。要证实这种因果关系,还需要进行临床前和临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信